1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
SUBROUTINE SB04MR( M, D, IPR, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To solve a linear algebraic system of order M whose coefficient
C matrix has zeros below the second subdiagonal. The matrix is
C stored compactly, row-wise.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C M (input) INTEGER
C The order of the system. M >= 0.
C Note that parameter M should have twice the value in the
C original problem (see SLICOT Library routine SB04MU).
C
C D (input/output) DOUBLE PRECISION array, dimension
C (M*(M+1)/2+3*M)
C On entry, the first M*(M+1)/2 + 2*M elements of this array
C must contain the coefficient matrix, stored compactly,
C row-wise, and the next M elements must contain the right
C hand side of the linear system, as set by SLICOT Library
C routine SB04MU.
C On exit, the content of this array is updated, the last M
C elements containing the solution with components
C interchanged (see IPR).
C
C IPR (output) INTEGER array, dimension (2*M)
C The leading M elements contain information about the
C row interchanges performed for solving the system.
C Specifically, the i-th component of the solution is
C specified by IPR(i).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C = 1: if a singular matrix was encountered.
C
C METHOD
C
C Gaussian elimination with partial pivoting is used. The rows of
C the matrix are not actually permuted, only their indices are
C interchanged in array IPR.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C Release 3.0: V. Sima, Katholieke Univ. Leuven, Belgium, Sep. 1997.
C Supersedes Release 2.0 routine SB04AR by G. Golub, S. Nash, and
C C. Van Loan, Stanford University, California, United States of
C America, January 1982.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, M
C .. Array Arguments ..
INTEGER IPR(*)
DOUBLE PRECISION D(*)
C .. Local Scalars ..
INTEGER I, I1, I2, IPRM, IPRM1, J, K, L, M1, MPI, MPI1,
$ MPI2
DOUBLE PRECISION D1, D2, D3, DMAX
C .. External Subroutines ..
EXTERNAL DAXPY
C .. Intrinsic Functions ..
INTRINSIC ABS
C .. Executable Statements ..
C
INFO = 0
I2 = ( M*( M + 5 ) )/2
MPI = M
IPRM = I2
M1 = M
I1 = 1
C
DO 20 I = 1, M
MPI = MPI + 1
IPRM = IPRM + 1
IPR(MPI) = I1
IPR(I) = IPRM
I1 = I1 + M1
IF ( I.GE.3 ) M1 = M1 - 1
20 CONTINUE
C
M1 = M - 1
MPI1 = M + 1
C
C Reduce to upper triangular form.
C
DO 80 I = 1, M1
MPI = MPI1
MPI1 = MPI1 + 1
IPRM = IPR(MPI)
D1 = D(IPRM)
I1 = 2
IF ( I.EQ.M1 ) I1 = 1
MPI2 = MPI + I1
L = 0
DMAX = ABS( D1 )
C
DO 40 J = MPI1, MPI2
D2 = D(IPR(J))
D3 = ABS( D2 )
IF ( D3.GT.DMAX ) THEN
DMAX = D3
D1 = D2
L = J - MPI
END IF
40 CONTINUE
C
C Check singularity.
C
IF ( DMAX.EQ.ZERO ) THEN
INFO = 1
RETURN
END IF
C
IF ( L.GT.0 ) THEN
C
C Permute the row indices.
C
K = IPRM
J = MPI + L
IPRM = IPR(J)
IPR(J) = K
IPR(MPI) = IPRM
K = IPR(I)
I2 = I + L
IPR(I) = IPR(I2)
IPR(I2) = K
END IF
IPRM = IPRM + 1
C
C Annihilate the subdiagonal elements of the matrix.
C
I2 = I
D3 = D(IPR(I))
C
DO 60 J = MPI1, MPI2
I2 = I2 + 1
IPRM1 = IPR(J)
DMAX = -D(IPRM1)/D1
D(IPR(I2)) = D(IPR(I2)) + DMAX*D3
CALL DAXPY( M-I, DMAX, D(IPRM), 1, D(IPRM1+1), 1 )
60 CONTINUE
C
IPR(MPI1) = IPR(MPI1) + 1
IF ( I.NE.M1 ) IPR(MPI2) = IPR(MPI2) + 1
80 CONTINUE
C
MPI = M + M
IPRM = IPR(MPI)
C
C Check singularity.
C
IF ( D(IPRM).EQ.ZERO ) THEN
INFO = 1
RETURN
END IF
C
C Back substitution.
C
D(IPR(M)) = D(IPR(M))/D(IPRM)
C
DO 120 I = M1, 1, -1
MPI = MPI - 1
IPRM = IPR(MPI)
IPRM1 = IPRM
DMAX = ZERO
C
DO 100 K = I+1, M
IPRM1 = IPRM1 + 1
DMAX = DMAX + D(IPR(K))*D(IPRM1)
100 CONTINUE
C
D(IPR(I)) = ( D(IPR(I)) - DMAX )/D(IPRM)
120 CONTINUE
C
RETURN
C *** Last line of SB04MR ***
END
|