1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
|
SUBROUTINE SB04PD( DICO, FACTA, FACTB, TRANA, TRANB, ISGN, M, N,
$ A, LDA, U, LDU, B, LDB, V, LDV, C, LDC, SCALE,
$ DWORK, LDWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To solve for X either the real continuous-time Sylvester equation
C
C op(A)*X + ISGN*X*op(B) = scale*C, (1)
C
C or the real discrete-time Sylvester equation
C
C op(A)*X*op(B) + ISGN*X = scale*C, (2)
C
C where op(M) = M or M**T, and ISGN = 1 or -1. A is M-by-M and
C B is N-by-N; the right hand side C and the solution X are M-by-N;
C and scale is an output scale factor, set less than or equal to 1
C to avoid overflow in X. The solution matrix X is overwritten
C onto C.
C
C If A and/or B are not (upper) quasi-triangular, that is, block
C upper triangular with 1-by-1 and 2-by-2 diagonal blocks, they are
C reduced to Schur canonical form, that is, quasi-triangular with
C each 2-by-2 diagonal block having its diagonal elements equal and
C its off-diagonal elements of opposite sign.
C
C ARGUMENTS
C
C Mode Parameters
C
C DICO CHARACTER*1
C Specifies the equation from which X is to be determined
C as follows:
C = 'C': Equation (1), continuous-time case;
C = 'D': Equation (2), discrete-time case.
C
C FACTA CHARACTER*1
C Specifies whether or not the real Schur factorization
C of the matrix A is supplied on entry, as follows:
C = 'F': On entry, A and U contain the factors from the
C real Schur factorization of the matrix A;
C = 'N': The Schur factorization of A will be computed
C and the factors will be stored in A and U;
C = 'S': The matrix A is quasi-triangular (or Schur).
C
C FACTB CHARACTER*1
C Specifies whether or not the real Schur factorization
C of the matrix B is supplied on entry, as follows:
C = 'F': On entry, B and V contain the factors from the
C real Schur factorization of the matrix B;
C = 'N': The Schur factorization of B will be computed
C and the factors will be stored in B and V;
C = 'S': The matrix B is quasi-triangular (or Schur).
C
C TRANA CHARACTER*1
C Specifies the form of op(A) to be used, as follows:
C = 'N': op(A) = A (No transpose);
C = 'T': op(A) = A**T (Transpose);
C = 'C': op(A) = A**T (Conjugate transpose = Transpose).
C
C TRANB CHARACTER*1
C Specifies the form of op(B) to be used, as follows:
C = 'N': op(B) = B (No transpose);
C = 'T': op(B) = B**T (Transpose);
C = 'C': op(B) = B**T (Conjugate transpose = Transpose).
C
C ISGN INTEGER
C Specifies the sign of the equation as described before.
C ISGN may only be 1 or -1.
C
C Input/Output Parameters
C
C M (input) INTEGER
C The order of the matrix A, and the number of rows in the
C matrices X and C. M >= 0.
C
C N (input) INTEGER
C The order of the matrix B, and the number of columns in
C the matrices X and C. N >= 0.
C
C A (input or input/output) DOUBLE PRECISION array,
C dimension (LDA,M)
C On entry, the leading M-by-M part of this array must
C contain the matrix A. If FACTA = 'S', then A contains
C a quasi-triangular matrix, and if FACTA = 'F', then A
C is in Schur canonical form; the elements below the upper
C Hessenberg part of the array A are not referenced.
C On exit, if FACTA = 'N', and INFO = 0 or INFO >= M+1, the
C leading M-by-M upper Hessenberg part of this array
C contains the upper quasi-triangular matrix in Schur
C canonical form from the Schur factorization of A. The
C contents of array A is not modified if FACTA = 'F' or 'S'.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C U (input or output) DOUBLE PRECISION array, dimension
C (LDU,M)
C If FACTA = 'F', then U is an input argument and on entry
C the leading M-by-M part of this array must contain the
C orthogonal matrix U of the real Schur factorization of A.
C If FACTA = 'N', then U is an output argument and on exit,
C if INFO = 0 or INFO >= M+1, it contains the orthogonal
C M-by-M matrix from the real Schur factorization of A.
C If FACTA = 'S', the array U is not referenced.
C
C LDU INTEGER
C The leading dimension of array U.
C LDU >= MAX(1,M), if FACTA = 'F' or 'N';
C LDU >= 1, if FACTA = 'S'.
C
C B (input or input/output) DOUBLE PRECISION array,
C dimension (LDB,N)
C On entry, the leading N-by-N part of this array must
C contain the matrix B. If FACTB = 'S', then B contains
C a quasi-triangular matrix, and if FACTB = 'F', then B
C is in Schur canonical form; the elements below the upper
C Hessenberg part of the array B are not referenced.
C On exit, if FACTB = 'N', and INFO = 0 or INFO = M+N+1,
C the leading N-by-N upper Hessenberg part of this array
C contains the upper quasi-triangular matrix in Schur
C canonical form from the Schur factorization of B. The
C contents of array B is not modified if FACTB = 'F' or 'S'.
C
C LDB (input) INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C V (input or output) DOUBLE PRECISION array, dimension
C (LDV,N)
C If FACTB = 'F', then V is an input argument and on entry
C the leading N-by-N part of this array must contain the
C orthogonal matrix V of the real Schur factorization of B.
C If FACTB = 'N', then V is an output argument and on exit,
C if INFO = 0 or INFO = M+N+1, it contains the orthogonal
C N-by-N matrix from the real Schur factorization of B.
C If FACTB = 'S', the array V is not referenced.
C
C LDV INTEGER
C The leading dimension of array V.
C LDV >= MAX(1,N), if FACTB = 'F' or 'N';
C LDV >= 1, if FACTB = 'S'.
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading M-by-N part of this array must
C contain the right hand side matrix C.
C On exit, if INFO = 0 or INFO = M+N+1, the leading M-by-N
C part of this array contains the solution matrix X.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M).
C
C SCALE (output) DOUBLE PRECISION
C The scale factor, scale, set less than or equal to 1 to
C prevent the solution overflowing.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0 or M+N+1, then: DWORK(1) returns the
C optimal value of LDWORK; if FACTA = 'N', DWORK(1+i) and
C DWORK(1+M+i), i = 1,...,M, contain the real and imaginary
C parts, respectively, of the eigenvalues of A; and, if
C FACTB = 'N', DWORK(1+f+j) and DWORK(1+f+N+j), j = 1,...,N,
C with f = 2*M if FACTA = 'N', and f = 0, otherwise, contain
C the real and imaginary parts, respectively, of the
C eigenvalues of B.
C
C LDWORK INTEGER
C The length of the array DWORK.
C LDWORK >= MAX( 1, a+MAX( c, b+d, b+e ) ),
C where a = 1+2*M, if FACTA = 'N',
C a = 0, if FACTA <> 'N',
C b = 2*N, if FACTB = 'N', FACTA = 'N',
C b = 1+2*N, if FACTB = 'N', FACTA <> 'N',
C b = 0, if FACTB <> 'N',
C c = 3*M, if FACTA = 'N',
C c = M, if FACTA = 'F',
C c = 0, if FACTA = 'S',
C d = 3*N, if FACTB = 'N',
C d = N, if FACTB = 'F',
C d = 0, if FACTB = 'S',
C e = M, if DICO = 'C', FACTA <> 'S',
C e = 0, if DICO = 'C', FACTA = 'S',
C e = 2*M, if DICO = 'D'.
C An upper bound is
C LDWORK = 1+2*M+MAX( 3*M, 5*N, 2*N+2*M ).
C For good performance, LDWORK should be larger, e.g.,
C LDWORK = 1+2*M+MAX( 3*M, 5*N, 2*N+2*M, 2*N+M*N ).
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = i: if INFO = i, i = 1,...,M, the QR algorithm failed
C to compute all the eigenvalues of the matrix A
C (see LAPACK Library routine DGEES); the elements
C 2+i:1+M and 2+i+M:1+2*M of DWORK contain the real
C and imaginary parts, respectively, of the
C eigenvalues of A which have converged, and the
C array A contains the partially converged Schur form;
C = M+j: if INFO = M+j, j = 1,...,N, the QR algorithm
C failed to compute all the eigenvalues of the matrix
C B (see LAPACK Library routine DGEES); the elements
C 2+f+j:1+f+N and 2+f+j+N:1+f+2*N of DWORK contain the
C real and imaginary parts, respectively, of the
C eigenvalues of B which have converged, and the
C array B contains the partially converged Schur form;
C as defined for the parameter DWORK,
C f = 2*M, if FACTA = 'N',
C f = 0, if FACTA <> 'N';
C = M+N+1: if DICO = 'C', and the matrices A and -ISGN*B
C have common or very close eigenvalues, or
C if DICO = 'D', and the matrices A and -ISGN*B have
C almost reciprocal eigenvalues (that is, if lambda(i)
C and mu(j) are eigenvalues of A and -ISGN*B, then
C lambda(i) = 1/mu(j) for some i and j);
C perturbed values were used to solve the equation
C (but the matrices A and B are unchanged).
C
C METHOD
C
C An extension and refinement of the algorithms in [1,2] is used.
C If the matrices A and/or B are not quasi-triangular (see PURPOSE),
C they are reduced to Schur canonical form
C
C A = U*S*U', B = V*T*V',
C
C where U, V are orthogonal, and S, T are block upper triangular
C with 1-by-1 and 2-by-2 blocks on their diagonal. The right hand
C side matrix C is updated accordingly,
C
C C = U'*C*V;
C
C then, the solution matrix X of the "reduced" Sylvester equation
C (with A and B in (1) or (2) replaced by S and T, respectively),
C is computed column-wise via a back substitution scheme. A set of
C equivalent linear algebraic systems of equations of order at most
C four are formed and solved using Gaussian elimination with
C complete pivoting. Finally, the solution X of the original
C equation is obtained from the updating formula
C
C X = U*X*V'.
C
C If A and/or B are already quasi-triangular (or in Schur form), the
C initial factorizations and the corresponding updating steps are
C omitted.
C
C REFERENCES
C
C [1] Bartels, R.H. and Stewart, G.W. T
C Solution of the matrix equation A X + XB = C.
C Comm. A.C.M., 15, pp. 820-826, 1972.
C
C [2] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.,
C Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A.,
C Ostrouchov, S., and Sorensen, D.
C LAPACK Users' Guide: Second Edition.
C SIAM, Philadelphia, 1995.
C
C NUMERICAL ASPECTS
C
C The algorithm is stable and reliable, since orthogonal
C transformations and Gaussian elimination with complete pivoting
C are used. If INFO = M+N+1, the Sylvester equation is numerically
C singular.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, April 2000.
C V. Sima, Research Institute for Informatics, Bucharest, Apr. 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Matrix algebra, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C ..
C .. Scalar Arguments ..
CHARACTER DICO, FACTA, FACTB, TRANA, TRANB
INTEGER INFO, ISGN, LDA, LDB, LDC, LDU, LDV, LDWORK, M,
$ N
DOUBLE PRECISION SCALE
C ..
C .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ DWORK( * ), U( LDU, * ), V( LDV, * )
C ..
C .. Local Scalars ..
LOGICAL BLAS3A, BLAS3B, BLOCKA, BLOCKB, CONT, NOFACA,
$ NOFACB, NOTRNA, NOTRNB, SCHURA, SCHURB
INTEGER AVAILW, BL, CHUNKA, CHUNKB, I, IA, IB, IERR, J,
$ JWORK, MAXWRK, MINWRK, SDIM
C ..
C .. Local Arrays ..
LOGICAL BWORK( 1 )
C ..
C .. External Functions ..
LOGICAL LSAME, SELECT1
EXTERNAL LSAME, SELECT1
C ..
C .. External Subroutines ..
EXTERNAL DCOPY, DGEES, DGEMM, DGEMV, DLACPY, DTRSYL,
$ SB04PY, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters
C
CONT = LSAME( DICO, 'C' )
NOFACA = LSAME( FACTA, 'N' )
NOFACB = LSAME( FACTB, 'N' )
SCHURA = LSAME( FACTA, 'S' )
SCHURB = LSAME( FACTB, 'S' )
NOTRNA = LSAME( TRANA, 'N' )
NOTRNB = LSAME( TRANB, 'N' )
C
INFO = 0
IF( .NOT.CONT .AND. .NOT.LSAME( DICO, 'D' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOFACA .AND. .NOT.LSAME( FACTA, 'F' ) .AND.
$ .NOT.SCHURA ) THEN
INFO = -2
ELSE IF( .NOT.NOFACB .AND. .NOT.LSAME( FACTB, 'F' ) .AND.
$ .NOT.SCHURB ) THEN
INFO = -3
ELSE IF( .NOT.NOTRNA .AND. .NOT.LSAME( TRANA, 'T' ) .AND.
$ .NOT.LSAME( TRANA, 'C' ) ) THEN
INFO = -4
ELSE IF( .NOT.NOTRNB .AND. .NOT.LSAME( TRANB, 'T' ) .AND.
$ .NOT.LSAME( TRANB, 'C' ) ) THEN
INFO = -5
ELSE IF( ISGN.NE.1 .AND. ISGN.NE.-1 ) THEN
INFO = -6
ELSE IF( M.LT.0 ) THEN
INFO = -7
ELSE IF( N.LT.0 ) THEN
INFO = -8
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -10
ELSE IF( LDU.LT.1 .OR. ( .NOT.SCHURA .AND. LDU.LT.M ) ) THEN
INFO = -12
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -14
ELSE IF( LDV.LT.1 .OR. ( .NOT.SCHURB .AND. LDV.LT.N ) ) THEN
INFO = -16
ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
INFO = -18
ELSE
IF ( NOFACA ) THEN
IA = 1 + 2*M
MINWRK = 3*M
ELSE
IA = 0
END IF
IF ( SCHURA ) THEN
MINWRK = 0
ELSE IF ( .NOT.NOFACA ) THEN
MINWRK = M
END IF
IB = 0
IF ( NOFACB ) THEN
IB = 2*N
IF ( .NOT.NOFACA )
$ IB = IB + 1
MINWRK = MAX( MINWRK, IB + 3*N )
ELSE IF ( .NOT.SCHURB ) THEN
MINWRK = MAX( MINWRK, N )
END IF
IF ( CONT ) THEN
IF ( .NOT.SCHURA )
$ MINWRK = MAX( MINWRK, IB + M )
ELSE
MINWRK = MAX( MINWRK, IB + 2*M )
END IF
MINWRK = MAX( 1, IA + MINWRK )
IF( LDWORK.LT.MINWRK )
$ INFO = -21
END IF
C
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB04PD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( M.EQ.0 .OR. N.EQ.0 ) THEN
SCALE = ONE
DWORK( 1 ) = ONE
RETURN
END IF
MAXWRK = MINWRK
C
IF( NOFACA ) THEN
C
C Compute the Schur factorization of A.
C Workspace: need 1+5*M;
C prefer larger.
C (Note: Comments in the code beginning "Workspace:" describe the
C minimal amount of real workspace needed at that point in the
C code, as well as the preferred amount for good performance.
C NB refers to the optimal block size for the immediately
C following subroutine, as returned by ILAENV.)
C
JWORK = 2*M + 2
IA = JWORK
AVAILW = LDWORK - JWORK + 1
CALL DGEES( 'Vectors', 'Not ordered', SELECT1, M, A, LDA, SDIM,
$ DWORK( 2 ), DWORK( M+2 ), U, LDU, DWORK( JWORK ),
$ AVAILW, BWORK, IERR )
IF( IERR.GT.0 ) THEN
INFO = IERR
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK( JWORK ) ) + JWORK - 1 )
ELSE
JWORK = 1
IA = 2
AVAILW = LDWORK
END IF
C
IF( .NOT.SCHURA ) THEN
C
C Transform the right-hand side: C <-- U'*C.
C Workspace: need a+M,
C prefer a+M*N,
C where a = 1+2*M, if FACTA = 'N',
C a = 0, if FACTA <> 'N'.
C
CHUNKA = AVAILW / M
BLOCKA = MIN( CHUNKA, N ).GT.1
BLAS3A = CHUNKA.GE.N .AND. BLOCKA
C
IF ( BLAS3A ) THEN
C
C Enough workspace for a fast BLAS 3 algorithm.
C
CALL DLACPY( 'Full', M, N, C, LDC, DWORK( JWORK ), M )
CALL DGEMM( 'Transpose', 'NoTranspose', M, N, M, ONE,
$ U, LDU, DWORK( JWORK ), M, ZERO, C, LDC )
ELSE IF ( BLOCKA ) THEN
C
C Use as many columns of C as possible.
C
DO 10 J = 1, N, CHUNKA
BL = MIN( N-J+1, CHUNKA )
CALL DLACPY( 'Full', M, BL, C( 1, J ), LDC,
$ DWORK( JWORK ), M )
CALL DGEMM( 'Transpose', 'NoTranspose', M, BL, M, ONE,
$ U, LDU, DWORK( JWORK ), M, ZERO, C( 1, J ),
$ LDC )
10 CONTINUE
C
ELSE
C
C Use a BLAS 2 algorithm.
C
DO 20 J = 1, N
CALL DCOPY( M, C( 1, J ), 1, DWORK( JWORK ), 1 )
CALL DGEMV( 'Transpose', M, M, ONE, U, LDU,
$ DWORK( JWORK ), 1, ZERO, C( 1, J ), 1 )
20 CONTINUE
C
END IF
MAXWRK = MAX( MAXWRK, JWORK + M*N - 1 )
END IF
C
IF( NOFACB ) THEN
C
C Compute the Schur factorization of B.
C Workspace: need 1+MAX(a-1,0)+5*N,
C prefer larger.
C
JWORK = IA + 2*N
AVAILW = LDWORK - JWORK + 1
CALL DGEES( 'Vectors', 'Not ordered', SELECT1, N, B, LDB, SDIM,
$ DWORK( IA ), DWORK( N+IA ), V, LDV, DWORK( JWORK ),
$ AVAILW, BWORK, IERR )
IF( IERR.GT.0 ) THEN
INFO = IERR + M
RETURN
END IF
MAXWRK = MAX( MAXWRK, INT( DWORK( JWORK ) ) + JWORK - 1 )
C
IF( .NOT.SCHURA ) THEN
C
C Recompute the blocking parameters.
C
CHUNKA = AVAILW / M
BLOCKA = MIN( CHUNKA, N ).GT.1
BLAS3A = CHUNKA.GE.N .AND. BLOCKA
END IF
END IF
C
IF( .NOT.SCHURB ) THEN
C
C Transform the right-hand side: C <-- C*V.
C Workspace: need a+b+N,
C prefer a+b+M*N,
C where b = 2*N, if FACTB = 'N', FACTA = 'N',
C b = 1+2*N, if FACTB = 'N', FACTA <> 'N',
C b = 0, if FACTB <> 'N'.
C
CHUNKB = AVAILW / N
BLOCKB = MIN( CHUNKB, M ).GT.1
BLAS3B = CHUNKB.GE.M .AND. BLOCKB
C
IF ( BLAS3B ) THEN
C
C Enough workspace for a fast BLAS 3 algorithm.
C
CALL DLACPY( 'Full', M, N, C, LDC, DWORK( JWORK ), M )
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, N, ONE,
$ DWORK( JWORK ), M, V, LDV, ZERO, C, LDC )
ELSE IF ( BLOCKB ) THEN
C
C Use as many rows of C as possible.
C
DO 30 I = 1, M, CHUNKB
BL = MIN( M-I+1, CHUNKB )
CALL DLACPY( 'Full', BL, N, C( I, 1 ), LDC,
$ DWORK( JWORK ), BL )
CALL DGEMM( 'NoTranspose', 'NoTranspose', BL, N, N, ONE,
$ DWORK( JWORK ), BL, V, LDV, ZERO, C( I, 1 ),
$ LDC )
30 CONTINUE
C
ELSE
C
C Use a BLAS 2 algorithm.
C
DO 40 I = 1, M
CALL DCOPY( N, C( I, 1 ), LDC, DWORK( JWORK ), 1 )
CALL DGEMV( 'Transpose', N, N, ONE, V, LDV,
$ DWORK( JWORK ), 1, ZERO, C( I, 1 ), LDC )
40 CONTINUE
C
END IF
MAXWRK = MAX( MAXWRK, JWORK + M*N - 1 )
END IF
C
C Solve the (transformed) equation.
C Workspace for DICO = 'D': a+b+2*M.
C
IF ( CONT ) THEN
CALL DTRSYL( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
$ SCALE, IERR )
ELSE
CALL SB04PY( TRANA, TRANB, ISGN, M, N, A, LDA, B, LDB, C, LDC,
$ SCALE, DWORK( JWORK ), IERR )
MAXWRK = MAX( MAXWRK, JWORK + 2*M - 1 )
END IF
IF( IERR.GT.0 )
$ INFO = M + N + 1
C
C Transform back the solution, if needed.
C
IF( .NOT.SCHURA ) THEN
C
C Transform the right-hand side: C <-- U*C.
C Workspace: need a+b+M;
C prefer a+b+M*N.
C
IF ( BLAS3A ) THEN
C
C Enough workspace for a fast BLAS 3 algorithm.
C
CALL DLACPY( 'Full', M, N, C, LDC, DWORK( JWORK ), M )
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, N, M, ONE,
$ U, LDU, DWORK( JWORK ), M, ZERO, C, LDC )
ELSE IF ( BLOCKA ) THEN
C
C Use as many columns of C as possible.
C
DO 50 J = 1, N, CHUNKA
BL = MIN( N-J+1, CHUNKA )
CALL DLACPY( 'Full', M, BL, C( 1, J ), LDC,
$ DWORK( JWORK ), M )
CALL DGEMM( 'NoTranspose', 'NoTranspose', M, BL, M, ONE,
$ U, LDU, DWORK( JWORK ), M, ZERO, C( 1, J ),
$ LDC )
50 CONTINUE
C
ELSE
C
C Use a BLAS 2 algorithm.
C
DO 60 J = 1, N
CALL DCOPY( M, C( 1, J ), 1, DWORK( JWORK ), 1 )
CALL DGEMV( 'NoTranspose', M, M, ONE, U, LDU,
$ DWORK( JWORK ), 1, ZERO, C( 1, J ), 1 )
60 CONTINUE
C
END IF
END IF
C
IF( .NOT.SCHURB ) THEN
C
C Transform the right-hand side: C <-- C*V'.
C Workspace: need a+b+N;
C prefer a+b+M*N.
C
IF ( BLAS3B ) THEN
C
C Enough workspace for a fast BLAS 3 algorithm.
C
CALL DLACPY( 'Full', M, N, C, LDC, DWORK( JWORK ), M )
CALL DGEMM( 'NoTranspose', 'Transpose', M, N, N, ONE,
$ DWORK( JWORK ), M, V, LDV, ZERO, C, LDC )
ELSE IF ( BLOCKB ) THEN
C
C Use as many rows of C as possible.
C
DO 70 I = 1, M, CHUNKB
BL = MIN( M-I+1, CHUNKB )
CALL DLACPY( 'Full', BL, N, C( I, 1 ), LDC,
$ DWORK( JWORK ), BL )
CALL DGEMM( 'NoTranspose', 'Transpose', BL, N, N, ONE,
$ DWORK( JWORK ), BL, V, LDV, ZERO, C( I, 1 ),
$ LDC )
70 CONTINUE
C
ELSE
C
C Use a BLAS 2 algorithm.
C
DO 80 I = 1, M
CALL DCOPY( N, C( I, 1 ), LDC, DWORK( JWORK ), 1 )
CALL DGEMV( 'NoTranspose', N, N, ONE, V, LDV,
$ DWORK( JWORK ), 1, ZERO, C( I, 1 ), LDC )
80 CONTINUE
C
END IF
END IF
C
DWORK( 1 ) = DBLE( MAXWRK )
C
RETURN
C *** Last line of SB04PD ***
END
|