File: sb04qy.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (169 lines) | stat: -rw-r--r-- 4,720 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      SUBROUTINE SB04QY( N, M, IND, A, LDA, B, LDB, C, LDC, D, IPR,
     $                   INFO )
C
C     RELEASE 4.0, WGS COPYRIGHT 2000.
C
C     PURPOSE
C
C     To construct and solve a linear algebraic system of order M whose
C     coefficient matrix is in upper Hessenberg form. Such systems
C     appear when solving discrete-time Sylvester equations using the 
C     Hessenberg-Schur method.
C
C     ARGUMENTS
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix B.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix A.  M >= 0.
C
C     IND     (input) INTEGER
C             The index of the column in C to be computed.  IND >= 1.
C
C     A       (input) DOUBLE PRECISION array, dimension (LDA,M)
C             The leading M-by-M part of this array must contain an
C             upper Hessenberg matrix.
C
C     LDA     INTEGER
C             The leading dimension of array A.  LDA >= MAX(1,M).
C
C     B       (input) DOUBLE PRECISION array, dimension (LDB,N)
C             The leading N-by-N part of this array must contain a
C             matrix in real Schur form.
C
C     LDB     INTEGER
C             The leading dimension of array B.  LDB >= MAX(1,N).
C
C     C       (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C             On entry, the leading M-by-N part of this array must
C             contain the coefficient matrix C of the equation.
C             On exit, the leading M-by-N part of this array contains
C             the matrix C with column IND updated.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,M).
C
C     Workspace
C
C     D       DOUBLE PRECISION array, dimension (M*(M+1)/2+2*M)
C
C     IPR     INTEGER array, dimension (2*M)
C
C     Error Indicator
C
C     INFO    INTEGER
C             = 0:  successful exit;
C             > 0:  if INFO = IND, a singular matrix was encountered.
C
C     METHOD
C
C     A special linear algebraic system of order M, with coefficient
C     matrix in upper Hessenberg form is constructed and solved. The
C     coefficient matrix is stored compactly, row-wise.
C
C     REFERENCES
C
C     [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C         A Hessenberg-Schur method for the problem AX + XB = C.
C         IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C     [2] Sima, V.
C         Algorithms for Linear-quadratic Optimization.
C         Marcel Dekker, Inc., New York, 1996.
C
C     NUMERICAL ASPECTS
C     
C     None.
C
C     CONTRIBUTORS
C
C     D. Sima, University of Bucharest, May 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 ) 
C     .. Scalar Arguments ..
      INTEGER           INFO, IND, LDA, LDB, LDC, M, N
C     .. Array Arguments ..
      INTEGER           IPR(*)
      DOUBLE PRECISION  A(LDA,*), B(LDB,*), C(LDC,*), D(*)
C     .. Local Scalars ..
      INTEGER           I, I2, J, K, K1, K2, M1
C     .. Local Arrays ..
      DOUBLE PRECISION  DUM(1)
C     .. External Subroutines ..
      EXTERNAL          DAXPY, DCOPY, DSCAL, DTRMV, SB04MW
C     .. Executable Statements ..
C
      IF ( IND.LT.N ) THEN
         DUM(1) = ZERO
         CALL DCOPY ( M, DUM, 0, D, 1 ) 
         DO 10 I = IND + 1, N
            CALL DAXPY ( M, B(IND,I), C(1,I), 1, D, 1 )
   10    CONTINUE
         DO 20 I = 2, M
            C(I,IND) = C(I,IND) - A(I,I-1)*D(I-1) 
   20    CONTINUE  
         CALL DTRMV ( 'Upper', 'No Transpose', 'Non Unit', M, A, LDA,
     $                D, 1 )
         DO 30 I = 1, M
            C(I,IND) = C(I,IND) - D(I) 
   30    CONTINUE  
      END IF
C
      M1 = M + 1
      I2 = ( M*M1 )/2 + M1
      K2 = 1
      K  = M
C
C     Construct the linear algebraic system of order M.
C
      DO 40 I = 1, M
         J = M1 - K
         CALL DCOPY ( K, A(I,J), LDA, D(K2), 1 )
         CALL DSCAL ( K, B(IND,IND), D(K2), 1 )
         K1 = K2
         K2 = K2 + K
         IF ( I.GT.1 ) THEN
            K1 = K1 + 1
            K  = K - 1
         END IF
         D(K1) = D(K1) + ONE
C
C        Store the right hand side.
C
         D(I2) = C(I,IND)
         I2 = I2 + 1
   40 CONTINUE
C
C     Solve the linear algebraic system and store the solution in C.
C
      CALL SB04MW( M, D, IPR, INFO )
C
      IF ( INFO.NE.0 ) THEN
         INFO = IND
      ELSE
C
         DO 50 I = 1, M
            C(I,IND) = D(IPR(I))
   50    CONTINUE
C
      END IF
C
      RETURN
C *** Last line of SB04QY ***
      END