1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
SUBROUTINE SB04QY( N, M, IND, A, LDA, B, LDB, C, LDC, D, IPR,
$ INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 2000.
C
C PURPOSE
C
C To construct and solve a linear algebraic system of order M whose
C coefficient matrix is in upper Hessenberg form. Such systems
C appear when solving discrete-time Sylvester equations using the
C Hessenberg-Schur method.
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix B. N >= 0.
C
C M (input) INTEGER
C The order of the matrix A. M >= 0.
C
C IND (input) INTEGER
C The index of the column in C to be computed. IND >= 1.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,M)
C The leading M-by-M part of this array must contain an
C upper Hessenberg matrix.
C
C LDA INTEGER
C The leading dimension of array A. LDA >= MAX(1,M).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,N)
C The leading N-by-N part of this array must contain a
C matrix in real Schur form.
C
C LDB INTEGER
C The leading dimension of array B. LDB >= MAX(1,N).
C
C C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
C On entry, the leading M-by-N part of this array must
C contain the coefficient matrix C of the equation.
C On exit, the leading M-by-N part of this array contains
C the matrix C with column IND updated.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,M).
C
C Workspace
C
C D DOUBLE PRECISION array, dimension (M*(M+1)/2+2*M)
C
C IPR INTEGER array, dimension (2*M)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C > 0: if INFO = IND, a singular matrix was encountered.
C
C METHOD
C
C A special linear algebraic system of order M, with coefficient
C matrix in upper Hessenberg form is constructed and solved. The
C coefficient matrix is stored compactly, row-wise.
C
C REFERENCES
C
C [1] Golub, G.H., Nash, S. and Van Loan, C.F.
C A Hessenberg-Schur method for the problem AX + XB = C.
C IEEE Trans. Auto. Contr., AC-24, pp. 909-913, 1979.
C
C [2] Sima, V.
C Algorithms for Linear-quadratic Optimization.
C Marcel Dekker, Inc., New York, 1996.
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, May 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
INTEGER INFO, IND, LDA, LDB, LDC, M, N
C .. Array Arguments ..
INTEGER IPR(*)
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*), D(*)
C .. Local Scalars ..
INTEGER I, I2, J, K, K1, K2, M1
C .. Local Arrays ..
DOUBLE PRECISION DUM(1)
C .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DSCAL, DTRMV, SB04MW
C .. Executable Statements ..
C
IF ( IND.LT.N ) THEN
DUM(1) = ZERO
CALL DCOPY ( M, DUM, 0, D, 1 )
DO 10 I = IND + 1, N
CALL DAXPY ( M, B(IND,I), C(1,I), 1, D, 1 )
10 CONTINUE
DO 20 I = 2, M
C(I,IND) = C(I,IND) - A(I,I-1)*D(I-1)
20 CONTINUE
CALL DTRMV ( 'Upper', 'No Transpose', 'Non Unit', M, A, LDA,
$ D, 1 )
DO 30 I = 1, M
C(I,IND) = C(I,IND) - D(I)
30 CONTINUE
END IF
C
M1 = M + 1
I2 = ( M*M1 )/2 + M1
K2 = 1
K = M
C
C Construct the linear algebraic system of order M.
C
DO 40 I = 1, M
J = M1 - K
CALL DCOPY ( K, A(I,J), LDA, D(K2), 1 )
CALL DSCAL ( K, B(IND,IND), D(K2), 1 )
K1 = K2
K2 = K2 + K
IF ( I.GT.1 ) THEN
K1 = K1 + 1
K = K - 1
END IF
D(K1) = D(K1) + ONE
C
C Store the right hand side.
C
D(I2) = C(I,IND)
I2 = I2 + 1
40 CONTINUE
C
C Solve the linear algebraic system and store the solution in C.
C
CALL SB04MW( M, D, IPR, INFO )
C
IF ( INFO.NE.0 ) THEN
INFO = IND
ELSE
C
DO 50 I = 1, M
C(I,IND) = D(IPR(I))
50 CONTINUE
C
END IF
C
RETURN
C *** Last line of SB04QY ***
END
|