1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
SUBROUTINE SB04RV( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, BA,
$ LDBA, D, DWORK )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To construct the right-hand sides D for a system of equations in
C quasi-Hessenberg form solved via SB04RX (case with 2 right-hand
C sides).
C
C ARGUMENTS
C
C Mode Parameters
C
C ABSCHR CHARACTER*1
C Indicates whether AB contains A or B, as follows:
C = 'A': AB contains A;
C = 'B': AB contains B.
C
C UL CHARACTER*1
C Indicates whether AB is upper or lower Hessenberg matrix,
C as follows:
C = 'U': AB is upper Hessenberg;
C = 'L': AB is lower Hessenberg.
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the matrix A. N >= 0.
C
C M (input) INTEGER
C The order of the matrix B. M >= 0.
C
C C (input) DOUBLE PRECISION array, dimension (LDC,M)
C The leading N-by-M part of this array must contain both
C the not yet modified part of the coefficient matrix C of
C the Sylvester equation X + AXB = C, and both the currently
C computed part of the solution of the Sylvester equation.
C
C LDC INTEGER
C The leading dimension of array C. LDC >= MAX(1,N).
C
C INDX (input) INTEGER
C The position of the first column/row of C to be used in
C the construction of the right-hand side D.
C
C AB (input) DOUBLE PRECISION array, dimension (LDAB,*)
C The leading N-by-N or M-by-M part of this array must
C contain either A or B of the Sylvester equation
C X + AXB = C.
C
C LDAB INTEGER
C The leading dimension of array AB.
C LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on
C ABSCHR = 'A' or ABSCHR = 'B', respectively).
C
C BA (input) DOUBLE PRECISION array, dimension (LDBA,*)
C The leading N-by-N or M-by-M part of this array must
C contain either A or B of the Sylvester equation
C X + AXB = C, the matrix not contained in AB.
C
C LDBA INTEGER
C The leading dimension of array BA.
C LDBA >= MAX(1,N) or LDBA >= MAX(1,M) (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively).
C
C D (output) DOUBLE PRECISION array, dimension (*)
C The leading 2*N or 2*M part of this array (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the
C right-hand side stored as a matrix with two rows.
C
C Workspace
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C where LDWORK is equal to 2*N or 2*M (depending on
C ABSCHR = 'B' or ABSCHR = 'A', respectively).
C
C NUMERICAL ASPECTS
C
C None.
C
C CONTRIBUTORS
C
C D. Sima, University of Bucharest, May 2000.
C
C REVISIONS
C
C -
C
C KEYWORDS
C
C Hessenberg form, orthogonal transformation, real Schur form,
C Sylvester equation.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 )
C .. Scalar Arguments ..
CHARACTER ABSCHR, UL
INTEGER INDX, LDAB, LDBA, LDC, M, N
C .. Array Arguments ..
DOUBLE PRECISION AB(LDAB,*), BA(LDBA,*), C(LDC,*), D(*), DWORK(*)
C .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
C .. External Subroutines ..
EXTERNAL DCOPY, DGEMV
C .. Executable Statements ..
C
C For speed, no tests on the input scalar arguments are made.
C Quick return if possible.
C
IF ( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
C
IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C Construct the 2 columns of the right-hand side.
C
CALL DCOPY( N, C(1,INDX), 1, D(1), 2 )
CALL DCOPY( N, C(1,INDX+1), 1, D(2), 2 )
IF ( LSAME( UL, 'U' ) ) THEN
IF ( INDX.GT.1 ) THEN
CALL DGEMV( 'N', N, INDX-1, ONE, C, LDC, AB(1,INDX), 1,
$ ZERO, DWORK, 1 )
CALL DGEMV( 'N', N, INDX-1, ONE, C, LDC, AB(1,INDX+1),
$ 1, ZERO, DWORK(N+1), 1 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK(N+1), 1,
$ ONE, D(2), 2 )
END IF
ELSE
IF ( INDX.LT.M-1 ) THEN
CALL DGEMV( 'N', N, M-INDX-1, ONE, C(1,INDX+2), LDC,
$ AB(INDX+2,INDX), 1, ZERO, DWORK, 1 )
CALL DGEMV( 'N', N, M-INDX-1, ONE, C(1,INDX+2), LDC,
$ AB(INDX+2,INDX+1), 1, ZERO, DWORK(N+1), 1 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK(N+1), 1,
$ ONE, D(2), 2 )
END IF
END IF
ELSE
C
C Construct the 2 rows of the right-hand side.
C
CALL DCOPY( M, C(INDX,1), LDC, D(1), 2 )
CALL DCOPY( M, C(INDX+1,1), LDC, D(2), 2 )
IF ( LSAME( UL, 'U' ) ) THEN
IF ( INDX.LT.N-1 ) THEN
CALL DGEMV( 'T', N-INDX-1, M, ONE, C(INDX+2,1), LDC,
$ AB(INDX,INDX+2), LDAB, ZERO, DWORK, 1 )
CALL DGEMV( 'T', N-INDX-1, M, ONE, C(INDX+2,1), LDC,
$ AB(INDX+1,INDX+2), LDAB, ZERO, DWORK(M+1),
$ 1 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK(M+1), 1,
$ ONE, D(2), 2 )
END IF
ELSE
IF ( INDX.GT.1 ) THEN
CALL DGEMV( 'T', INDX-1, M, ONE, C, LDC, AB(INDX,1),
$ LDAB, ZERO, DWORK, 1 )
CALL DGEMV( 'T', INDX-1, M, ONE, C, LDC, AB(INDX+1,1),
$ LDAB, ZERO, DWORK(M+1), 1 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE,
$ D(1), 2 )
CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK(M+1), 1,
$ ONE, D(2), 2 )
END IF
END IF
END IF
C
RETURN
C *** Last line of SB04RV ***
END
|