1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  
     | 
    
            SUBROUTINE SB04RW( ABSCHR, UL, N, M, C, LDC, INDX, AB, LDAB, BA,
     $                   LDBA, D, DWORK )
C
C     RELEASE 4.0, WGS COPYRIGHT 2000.
C
C     PURPOSE
C
C     To construct the right-hand side D for a system of equations in
C     Hessenberg form solved via SB04RY (case with 1 right-hand side).
C
C     ARGUMENTS
C
C     Mode Parameters
C
C     ABSCHR  CHARACTER*1
C             Indicates whether AB contains A or B, as follows:
C             = 'A':  AB contains A;
C             = 'B':  AB contains B.
C
C     UL      CHARACTER*1
C             Indicates whether AB is upper or lower Hessenberg matrix,
C             as follows:
C             = 'U':  AB is upper Hessenberg;
C             = 'L':  AB is lower Hessenberg.
C
C     Input/Output Parameters
C
C     N       (input) INTEGER
C             The order of the matrix A.  N >= 0.
C
C     M       (input) INTEGER
C             The order of the matrix B.  M >= 0.
C
C     C       (input) DOUBLE PRECISION array, dimension (LDC,M)
C             The leading N-by-M part of this array must contain both 
C             the not yet modified part of the coefficient matrix C of
C             the Sylvester equation X + AXB = C, and both the currently
C             computed part of the solution of the Sylvester equation.
C
C     LDC     INTEGER
C             The leading dimension of array C.  LDC >= MAX(1,N).
C
C     INDX    (input) INTEGER
C             The position of the column/row of C to be used in the
C             construction of the right-hand side D.
C
C     AB      (input) DOUBLE PRECISION array, dimension (LDAB,*)
C             The leading N-by-N or M-by-M part of this array must
C             contain either A or B of the Sylvester equation
C             X + AXB = C.
C
C     LDAB    INTEGER
C             The leading dimension of array AB.
C             LDAB >= MAX(1,N) or LDAB >= MAX(1,M) (depending on
C             ABSCHR = 'A' or ABSCHR = 'B', respectively).
C
C     BA      (input) DOUBLE PRECISION array, dimension (LDBA,*)
C             The leading N-by-N or M-by-M part of this array must
C             contain either A or B of the Sylvester equation
C             X + AXB = C, the matrix not contained in AB.
C
C     LDBA    INTEGER
C             The leading dimension of array BA.
C             LDBA >= MAX(1,N) or LDBA >= MAX(1,M) (depending on
C             ABSCHR = 'B' or ABSCHR = 'A', respectively).
C
C     D       (output) DOUBLE PRECISION array, dimension (*)
C             The leading N or M part of this array (depending on
C             ABSCHR = 'B' or ABSCHR = 'A', respectively) contains the
C             right-hand side.
C
C     Workspace
C
C     DWORK   DOUBLE PRECISION array, dimension (LDWORK)
C             where LDWORK is equal to N or M (depending on ABSCHR = 'B'
C             or ABSCHR = 'A', respectively).
C
C     NUMERICAL ASPECTS
C
C     None.
C
C     CONTRIBUTORS
C
C     D. Sima, University of Bucharest, May 2000.
C
C     REVISIONS
C
C     -
C
C     KEYWORDS
C
C     Hessenberg form, orthogonal transformation, real Schur form,
C     Sylvester equation.
C
C     ******************************************************************
C
C     .. Parameters ..
      DOUBLE PRECISION  ONE, ZERO
      PARAMETER         ( ONE = 1.0D0, ZERO = 0.0D0 )
C     .. Scalar Arguments ..
      CHARACTER         ABSCHR, UL
      INTEGER           INDX, LDAB, LDBA, LDC, M, N
C     .. Array Arguments ..
      DOUBLE PRECISION  AB(LDAB,*), BA(LDBA,*), C(LDC,*), D(*), DWORK(*)
C     .. External Functions ..
      LOGICAL           LSAME
      EXTERNAL          LSAME
C     .. External Subroutines ..
      EXTERNAL          DCOPY, DGEMV
C     .. Executable Statements ..
C
C     For speed, no tests on the input scalar arguments are made.
C     Quick return if possible.
C
      IF ( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
C
      IF ( LSAME( ABSCHR, 'B' ) ) THEN
C
C        Construct the column of the right-hand side.
C
         CALL DCOPY( N, C(1,INDX), 1, D, 1 )
         IF ( LSAME( UL, 'U' ) ) THEN
            IF ( INDX.GT.1 ) THEN
               CALL DGEMV( 'N', N, INDX-1, ONE, C, LDC, AB(1,INDX), 1,
     $                     ZERO, DWORK, 1 )
               CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1,
     $                     ONE, D, 1 )
            END IF
         ELSE
            IF ( INDX.LT.M ) THEN
               CALL DGEMV( 'N', N, M-INDX, ONE, C(1,INDX+1), LDC,
     $                     AB(INDX+1,INDX), 1, ZERO, DWORK, 1 )
               CALL DGEMV( 'N', N, N, -ONE, BA, LDBA, DWORK, 1, ONE, D,
     $                     1 )
            END IF
         END IF
      ELSE
C
C        Construct the row of the right-hand side.
C
         CALL DCOPY( M, C(INDX,1), LDC, D, 1 )
         IF ( LSAME( UL, 'U' ) ) THEN
            IF ( INDX.LT.N ) THEN
               CALL DGEMV( 'T', N-INDX, M, ONE, C(INDX+1,1), LDC,
     $                     AB(INDX,INDX+1), LDAB, ZERO, DWORK, 1 )
               CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE, D,
     $                     1 )
            END IF
         ELSE
            IF ( INDX.GT.1 ) THEN
               CALL DGEMV( 'T', INDX-1, M, ONE, C, LDC, AB(INDX,1),
     $                     LDAB, ZERO, DWORK, 1 )
               CALL DGEMV( 'T', M, M, -ONE, BA, LDBA, DWORK, 1, ONE, D,
     $                     1 )
            END IF
         END IF
      END IF
C
      RETURN
C *** Last line of SB04RW ***
      END
 
     |