1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
SUBROUTINE SB10QD( N, M, NP, NCON, NMEAS, GAMMA, A, LDA, B, LDB,
$ C, LDC, D, LDD, F, LDF, H, LDH, X, LDX, Y, LDY,
$ XYCOND, IWORK, DWORK, LDWORK, BWORK, INFO )
C
C RELEASE 4.0, WGS COPYRIGHT 1999.
C
C PURPOSE
C
C To compute the state feedback and the output injection
C matrices for an H-infinity (sub)optimal n-state controller,
C using Glover's and Doyle's 1988 formulas, for the system
C
C | A | B1 B2 | | A | B |
C P = |----|---------| = |---|---|
C | C1 | D11 D12 | | C | D |
C | C2 | D21 D22 |
C
C and for a given value of gamma, where B2 has as column size the
C number of control inputs (NCON) and C2 has as row size the number
C of measurements (NMEAS) being provided to the controller.
C
C It is assumed that
C
C (A1) (A,B2) is stabilizable and (C2,A) is detectable,
C
C (A2) D12 is full column rank with D12 = | 0 | and D21 is
C | I |
C full row rank with D21 = | 0 I | as obtained by the
C subroutine SB10PD,
C
C (A3) | A-j*omega*I B2 | has full column rank for all omega,
C | C1 D12 |
C
C
C (A4) | A-j*omega*I B1 | has full row rank for all omega.
C | C2 D21 |
C
C
C ARGUMENTS
C
C Input/Output Parameters
C
C N (input) INTEGER
C The order of the system. N >= 0.
C
C M (input) INTEGER
C The column size of the matrix B. M >= 0.
C
C NP (input) INTEGER
C The row size of the matrix C. NP >= 0.
C
C NCON (input) INTEGER
C The number of control inputs (M2). M >= NCON >= 0,
C NP-NMEAS >= NCON.
C
C NMEAS (input) INTEGER
C The number of measurements (NP2). NP >= NMEAS >= 0,
C M-NCON >= NMEAS.
C
C GAMMA (input) DOUBLE PRECISION
C The value of gamma. It is assumed that gamma is
C sufficiently large so that the controller is admissible.
C GAMMA >= 0.
C
C A (input) DOUBLE PRECISION array, dimension (LDA,N)
C The leading N-by-N part of this array must contain the
C system state matrix A.
C
C LDA INTEGER
C The leading dimension of the array A. LDA >= max(1,N).
C
C B (input) DOUBLE PRECISION array, dimension (LDB,M)
C The leading N-by-M part of this array must contain the
C system input matrix B.
C
C LDB INTEGER
C The leading dimension of the array B. LDB >= max(1,N).
C
C C (input) DOUBLE PRECISION array, dimension (LDC,N)
C The leading NP-by-N part of this array must contain the
C system output matrix C.
C
C LDC INTEGER
C The leading dimension of the array C. LDC >= max(1,NP).
C
C D (input) DOUBLE PRECISION array, dimension (LDD,M)
C The leading NP-by-M part of this array must contain the
C system input/output matrix D.
C
C LDD INTEGER
C The leading dimension of the array D. LDD >= max(1,NP).
C
C F (output) DOUBLE PRECISION array, dimension (LDF,N)
C The leading M-by-N part of this array contains the state
C feedback matrix F.
C
C LDF INTEGER
C The leading dimension of the array F. LDF >= max(1,M).
C
C H (output) DOUBLE PRECISION array, dimension (LDH,NP)
C The leading N-by-NP part of this array contains the output
C injection matrix H.
C
C LDH INTEGER
C The leading dimension of the array H. LDH >= max(1,N).
C
C X (output) DOUBLE PRECISION array, dimension (LDX,N)
C The leading N-by-N part of this array contains the matrix
C X, solution of the X-Riccati equation.
C
C LDX INTEGER
C The leading dimension of the array X. LDX >= max(1,N).
C
C Y (output) DOUBLE PRECISION array, dimension (LDY,N)
C The leading N-by-N part of this array contains the matrix
C Y, solution of the Y-Riccati equation.
C
C LDY INTEGER
C The leading dimension of the array Y. LDY >= max(1,N).
C
C XYCOND (output) DOUBLE PRECISION array, dimension (2)
C XYCOND(1) contains an estimate of the reciprocal condition
C number of the X-Riccati equation;
C XYCOND(2) contains an estimate of the reciprocal condition
C number of the Y-Riccati equation.
C
C Workspace
C
C IWORK INTEGER array, dimension max(2*max(N,M-NCON,NP-NMEAS),N*N)
C
C DWORK DOUBLE PRECISION array, dimension (LDWORK)
C On exit, if INFO = 0, DWORK(1) contains the optimal
C LDWORK.
C
C LDWORK INTEGER
C The dimension of the array DWORK.
C LDWORK >= max(1,M*M + max(2*M1,3*N*N +
C max(N*M,10*N*N+12*N+5)),
C NP*NP + max(2*NP1,3*N*N +
C max(N*NP,10*N*N+12*N+5))),
C where M1 = M - M2 and NP1 = NP - NP2.
C For good performance, LDWORK must generally be larger.
C Denoting Q = MAX(M1,M2,NP1,NP2), an upper bound is
C max(1,4*Q*Q+max(2*Q,3*N*N + max(2*N*Q,10*N*N+12*N+5))).
C
C BWORK LOGICAL array, dimension (2*N)
C
C Error Indicator
C
C INFO INTEGER
C = 0: successful exit;
C < 0: if INFO = -i, the i-th argument had an illegal
C value;
C = 1: if the controller is not admissible (too small value
C of gamma);
C = 2: if the X-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties);
C = 3: if the Y-Riccati equation was not solved
C successfully (the controller is not admissible or
C there are numerical difficulties).
C
C METHOD
C
C The routine implements the Glover's and Doyle's formulas [1],[2]
C modified as described in [3]. The X- and Y-Riccati equations
C are solved with condition and accuracy estimates [4].
C
C REFERENCES
C
C [1] Glover, K. and Doyle, J.C.
C State-space formulae for all stabilizing controllers that
C satisfy an Hinf norm bound and relations to risk sensitivity.
C Systems and Control Letters, vol. 11, pp. 167-172, 1988.
C
C [2] Balas, G.J., Doyle, J.C., Glover, K., Packard, A., and
C Smith, R.
C mu-Analysis and Synthesis Toolbox.
C The MathWorks Inc., Natick, Mass., 1995.
C
C [3] Petkov, P.Hr., Gu, D.W., and Konstantinov, M.M.
C Fortran 77 routines for Hinf and H2 design of continuous-time
C linear control systems.
C Rep. 98-14, Department of Engineering, Leicester University,
C Leicester, U.K., 1998.
C
C [4] Petkov, P.Hr., Konstantinov, M.M., and Mehrmann, V.
C DGRSVX and DMSRIC: Fortan 77 subroutines for solving
C continuous-time matrix algebraic Riccati equations with
C condition and accuracy estimates.
C Preprint SFB393/98-16, Fak. f. Mathematik, Tech. Univ.
C Chemnitz, May 1998.
C
C NUMERICAL ASPECTS
C
C The precision of the solution of the matrix Riccati equations
C can be controlled by the values of the condition numbers
C XYCOND(1) and XYCOND(2) of these equations.
C
C FURTHER COMMENTS
C
C The Riccati equations are solved by the Schur approach
C implementing condition and accuracy estimates.
C
C CONTRIBUTORS
C
C P.Hr. Petkov, D.W. Gu and M.M. Konstantinov, October 1998.
C
C REVISIONS
C
C V. Sima, Research Institute for Informatics, Bucharest, May 1999,
C Sept. 1999.
C
C KEYWORDS
C
C Algebraic Riccati equation, H-infinity optimal control, robust
C control.
C
C ******************************************************************
C
C .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
C
C .. Scalar Arguments ..
INTEGER INFO, LDA, LDB, LDC, LDD, LDF, LDH, LDWORK,
$ LDX, LDY, M, N, NCON, NMEAS, NP
DOUBLE PRECISION GAMMA
C ..
C .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), C( LDC, * ),
$ D( LDD, * ), DWORK( * ), F( LDF, * ),
$ H( LDH, * ), X( LDX, * ), XYCOND( 2 ),
$ Y( LDY, * )
LOGICAL BWORK( * )
C
C ..
C .. Local Scalars ..
INTEGER INFO2, IW2, IWA, IWG, IWI, IWQ, IWR, IWRK, IWS,
$ IWT, IWV, LWAMAX, M1, M2, MINWRK, N2, ND1, ND2,
$ NN, NP1, NP2
DOUBLE PRECISION ANORM, EPS, FERR, RCOND, SEP
C ..
C .. External Functions ..
C
DOUBLE PRECISION DLAMCH, DLANSY
EXTERNAL DLAMCH, DLANSY
C ..
C .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLASET, DSYCON, DSYMM, DSYRK,
$ DSYTRF, DSYTRI, MB01RU, MB01RX, SB02RD, XERBLA
C ..
C .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX
C ..
C .. Executable Statements ..
C
C Decode and Test input parameters.
C
M1 = M - NCON
M2 = NCON
NP1 = NP - NMEAS
NP2 = NMEAS
NN = N*N
C
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -2
ELSE IF( NP.LT.0 ) THEN
INFO = -3
ELSE IF( NCON.LT.0 .OR. M1.LT.0 .OR. M2.GT.NP1 ) THEN
INFO = -4
ELSE IF( NMEAS.LT.0 .OR. NP1.LT.0 .OR. NP2.GT.M1 ) THEN
INFO = -5
ELSE IF( GAMMA.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( LDC.LT.MAX( 1, NP ) ) THEN
INFO = -12
ELSE IF( LDD.LT.MAX( 1, NP ) ) THEN
INFO = -14
ELSE IF( LDF.LT.MAX( 1, M ) ) THEN
INFO = -16
ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
INFO = -18
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -20
ELSE IF( LDY.LT.MAX( 1, N ) ) THEN
INFO = -22
ELSE
C
C Compute workspace.
C
MINWRK = MAX( 1, M*M + MAX( 2*M1, 3*NN +
$ MAX( N*M, 10*NN + 12*N + 5 ) ),
$ NP*NP + MAX( 2*NP1, 3*NN +
$ MAX( N*NP, 10*NN + 12*N + 5 ) ) )
IF( LDWORK.LT.MINWRK )
$ INFO = -26
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SB10QD', -INFO )
RETURN
END IF
C
C Quick return if possible.
C
IF( N.EQ.0 .OR. M.EQ.0 .OR. NP.EQ.0 .OR. M1.EQ.0 .OR. M2.EQ.0
$ .OR. NP1.EQ.0 .OR. NP2.EQ.0 ) THEN
XYCOND( 1 ) = ONE
XYCOND( 2 ) = ONE
DWORK( 1 ) = ONE
RETURN
END IF
ND1 = NP1 - M2
ND2 = M1 - NP2
N2 = 2*N
C
C Get the machine precision.
C
EPS = DLAMCH( 'Epsilon' )
C
C Workspace usage.
C
IWA = M*M + 1
IWQ = IWA + NN
IWG = IWQ + NN
IW2 = IWG + NN
C
C Compute |D1111'||D1111 D1112| - gamma^2*Im1 .
C |D1112'|
C
CALL DLASET( 'L', M1, M1, ZERO, -GAMMA*GAMMA, DWORK, M )
IF( ND1.GT.0 )
$ CALL DSYRK( 'L', 'T', M1, ND1, ONE, D, LDD, ONE, DWORK, M )
C
C Compute inv(|D1111'|*|D1111 D1112| - gamma^2*Im1) .
C |D1112'|
C
IWRK = IWA
ANORM = DLANSY( 'I', 'L', M1, DWORK, M, DWORK( IWRK ) )
CALL DSYTRF( 'L', M1, DWORK, M, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
C
LWAMAX = INT( DWORK( IWRK ) ) + IWRK - 1
CALL DSYCON( 'L', M1, DWORK, M, IWORK, ANORM, RCOND,
$ DWORK( IWRK ), IWORK( M1+1 ), INFO2 )
IF( RCOND.LT.EPS ) THEN
INFO = 1
RETURN
END IF
C
C Compute inv(R) block by block.
C
CALL DSYTRI( 'L', M1, DWORK, M, IWORK, DWORK( IWRK ), INFO2 )
C
C Compute -|D1121 D1122|*inv(|D1111'|*|D1111 D1112| - gamma^2*Im1) .
C |D1112'|
C
CALL DSYMM( 'R', 'L', M2, M1, -ONE, DWORK, M, D( ND1+1, 1 ), LDD,
$ ZERO, DWORK( M1+1 ), M )
C
C Compute |D1121 D1122|*inv(|D1111'|*|D1111 D1112| -
C |D1112'|
C
C gamma^2*Im1)*|D1121'| + Im2 .
C |D1122'|
C
CALL DLASET( 'Lower', M2, M2, ZERO, ONE, DWORK( M1*(M+1)+1 ), M )
CALL MB01RX( 'Right', 'Lower', 'Transpose', M2, M1, ONE, -ONE,
$ DWORK( M1*(M+1)+1 ), M, D( ND1+1, 1 ), LDD,
$ DWORK( M1+1 ), M, INFO2 )
C
C Compute D11'*C1 .
C
CALL DGEMM( 'T', 'N', M1, N, NP1, ONE, D, LDD, C, LDC, ZERO,
$ DWORK( IW2 ), M )
C
C Compute D1D'*C1 .
C
CALL DLACPY( 'Full', M2, N, C( ND1+1, 1 ), LDC, DWORK( IW2+M1 ),
$ M )
C
C Compute inv(R)*D1D'*C1 in F .
C
CALL DSYMM( 'L', 'L', M, N, ONE, DWORK, M, DWORK( IW2 ), M, ZERO,
$ F, LDF )
C
C Compute Ax = A - B*inv(R)*D1D'*C1 .
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IWA ), N )
CALL DGEMM( 'N', 'N', N, N, M, -ONE, B, LDB, F, LDF, ONE,
$ DWORK( IWA ), N )
C
C Compute Cx = C1'*C1 - C1'*D1D*inv(R)*D1D'*C1 .
C
IF( ND1.EQ.0 ) THEN
CALL DLASET( 'L', N, N, ZERO, ZERO, DWORK( IWQ ), N )
ELSE
CALL DSYRK( 'L', 'T', N, NP1, ONE, C, LDC, ZERO,
$ DWORK( IWQ ), N )
CALL MB01RX( 'Left', 'Lower', 'Transpose', N, M, ONE, -ONE,
$ DWORK( IWQ ), N, DWORK( IW2 ), M, F, LDF, INFO2 )
END IF
C
C Compute Dx = B*inv(R)*B' .
C
IWRK = IW2
CALL MB01RU( 'Lower', 'NoTranspose', N, M, ZERO, ONE,
$ DWORK( IWG ), N, B, LDB, DWORK, M, DWORK( IWRK ),
$ M*N, INFO2 )
C
C Solution of the Riccati equation Ax'*X + X*Ax + Cx - X*Dx*X = 0 .
C Workspace: need M*M + 13*N*N + 12*N + 5;
C prefer larger.
C
IWT = IW2
IWV = IWT + NN
IWR = IWV + NN
IWI = IWR + N2
IWS = IWI + N2
IWRK = IWS + 4*NN
C
CALL SB02RD( 'All', 'Continuous', 'NotUsed', 'NoTranspose',
$ 'Lower', 'GeneralScaling', 'Stable', 'NotFactored',
$ 'Original', N, DWORK( IWA ), N, DWORK( IWT ), N,
$ DWORK( IWV ), N, DWORK( IWG ), N, DWORK( IWQ ), N,
$ X, LDX, SEP, XYCOND( 1 ), FERR, DWORK( IWR ),
$ DWORK( IWI ), DWORK( IWS ), N2, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 2
RETURN
END IF
C
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C Compute F = -inv(R)*|D1D'*C1 + B'*X| .
C
IWRK = IW2
CALL DGEMM( 'T', 'N', M, N, N, ONE, B, LDB, X, LDX, ZERO,
$ DWORK( IWRK ), M )
CALL DSYMM( 'L', 'L', M, N, -ONE, DWORK, M, DWORK( IWRK ), M,
$ -ONE, F, LDF )
C
C Workspace usage.
C
IWA = NP*NP + 1
IWQ = IWA + NN
IWG = IWQ + NN
IW2 = IWG + NN
C
C Compute |D1111|*|D1111' D1121'| - gamma^2*Inp1 .
C |D1121|
C
CALL DLASET( 'U', NP1, NP1, ZERO, -GAMMA*GAMMA, DWORK, NP )
IF( ND2.GT.0 )
$ CALL DSYRK( 'U', 'N', NP1, ND2, ONE, D, LDD, ONE, DWORK, NP )
C
C Compute inv(|D1111|*|D1111' D1121'| - gamma^2*Inp1) .
C |D1121|
C
IWRK = IWA
ANORM = DLANSY( 'I', 'U', NP1, DWORK, NP, DWORK( IWRK ) )
CALL DSYTRF( 'U', NP1, DWORK, NP, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 1
RETURN
END IF
C
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
CALL DSYCON( 'U', NP1, DWORK, NP, IWORK, ANORM, RCOND,
$ DWORK( IWRK ), IWORK( NP1+1 ), INFO2 )
IF( RCOND.LT.EPS ) THEN
INFO = 1
RETURN
END IF
C
C Compute inv(RT) .
C
CALL DSYTRI( 'U', NP1, DWORK, NP, IWORK, DWORK( IWRK ), INFO2 )
C
C Compute -inv(|D1111||D1111' D1121'| - gamma^2*Inp1)*|D1112| .
C |D1121| |D1122|
C
CALL DSYMM( 'L', 'U', NP1, NP2, -ONE, DWORK, NP, D( 1, ND2+1 ),
$ LDD, ZERO, DWORK( NP1*NP+1 ), NP )
C
C Compute [D1112' D1122']*inv(|D1111||D1111' D1121'| -
C |D1121|
C
C gamma^2*Inp1)*|D1112| + Inp2 .
C |D1122|
C
CALL DLASET( 'Full', NP2, NP2, ZERO, ONE, DWORK( NP1*(NP+1)+1 ),
$ NP )
CALL MB01RX( 'Left', 'Upper', 'Transpose', NP2, NP1, ONE, -ONE,
$ DWORK( NP1*(NP+1)+1 ), NP, D( 1, ND2+1 ), LDD,
$ DWORK( NP1*NP+1 ), NP, INFO2 )
C
C Compute B1*D11' .
C
CALL DGEMM( 'N', 'T', N, NP1, M1, ONE, B, LDB, D, LDD, ZERO,
$ DWORK( IW2 ), N )
C
C Compute B1*DD1' .
C
CALL DLACPY( 'Full', N, NP2, B( 1, ND2+1 ), LDB,
$ DWORK( IW2+NP1*N ), N )
C
C Compute B1*DD1'*inv(RT) in H .
C
CALL DSYMM( 'R', 'U', N, NP, ONE, DWORK, NP, DWORK( IW2 ), N,
$ ZERO, H, LDH )
C
C Compute Ay = A - B1*DD1'*inv(RT)*C .
C
CALL DLACPY( 'Full', N, N, A, LDA, DWORK( IWA ), N )
CALL DGEMM( 'N', 'N', N, N, NP, -ONE, H, LDH, C, LDC, ONE,
$ DWORK( IWA ), N )
C
C Compute Cy = B1*B1' - B1*DD1'*inv(RT)*DD1*B1' .
C
IF( ND2.EQ.0 ) THEN
CALL DLASET( 'U', N, N, ZERO, ZERO, DWORK( IWQ ), N )
ELSE
CALL DSYRK( 'U', 'N', N, M1, ONE, B, LDB, ZERO, DWORK( IWQ ),
$ N )
CALL MB01RX( 'Right', 'Upper', 'Transpose', N, NP, ONE, -ONE,
$ DWORK( IWQ ), N, H, LDH, DWORK( IW2 ), N, INFO2 )
END IF
C
C Compute Dy = C'*inv(RT)*C .
C
IWRK = IW2
CALL MB01RU( 'Upper', 'Transpose', N, NP, ZERO, ONE, DWORK( IWG ),
$ N, C, LDC, DWORK, NP, DWORK( IWRK), N*NP, INFO2 )
C
C Solution of the Riccati equation Ay*Y + Y*Ay' + Cy - Y*Dy*Y = 0 .
C Workspace: need NP*NP + 13*N*N + 12*N + 5;
C prefer larger.
C
IWT = IW2
IWV = IWT + NN
IWR = IWV + NN
IWI = IWR + N2
IWS = IWI + N2
IWRK = IWS + 4*NN
C
CALL SB02RD( 'All', 'Continuous', 'NotUsed', 'Transpose',
$ 'Upper', 'GeneralScaling', 'Stable', 'NotFactored',
$ 'Original', N, DWORK( IWA ), N, DWORK( IWT ), N,
$ DWORK( IWV ), N, DWORK( IWG ), N, DWORK( IWQ ), N,
$ Y, LDY, SEP, XYCOND( 2 ), FERR, DWORK( IWR ),
$ DWORK( IWI ), DWORK( IWS ), N2, IWORK, DWORK( IWRK ),
$ LDWORK-IWRK+1, BWORK, INFO2 )
IF( INFO2.GT.0 ) THEN
INFO = 3
RETURN
END IF
C
LWAMAX = MAX( INT( DWORK( IWRK ) ) + IWRK - 1, LWAMAX )
C
C Compute H = -|B1*DD1' + Y*C'|*inv(RT) .
C
IWRK = IW2
CALL DGEMM( 'N', 'T', N, NP, N, ONE, Y, LDY, C, LDC, ZERO,
$ DWORK( IWRK ), N )
CALL DSYMM( 'R', 'U', N, NP, -ONE, DWORK, NP, DWORK( IWRK ), N,
$ -ONE, H, LDH )
C
DWORK( 1 ) = DBLE( LWAMAX )
RETURN
C *** Last line of SB10QD ***
END
|