1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
subroutine dij2sp(m,n,nel,ij,v,ind,nind,iw,ierr)
c!purpose
c generates a sparse matrix from (i,j), v description
c!parameters
c ierr=0 : ok
c ierr=1 : almost on index in ij is greater than corresponding
c dimension m or n
c ierr=2 : not enough memory for ind
c ierr=3 : doubly defined entry with different value
c!
c Copyright INRIA
double precision v(nel)
integer ij(nel,2),ind(nind),iw(nel)
c
ierr=0
if(nel.eq.0) then
call iset(m,0,ind,1)
return
endif
c sort indexes
call spsort(ij,nel,iw)
call dperm(v,nel,iw)
c
mm=ij(nel,1)
nm=ij(1,2)
if(nel.ge.2) then
do 01 k=2,nel
nm=max(nm,ij(k,2))
01 continue
endif
c eliminate zero entries, check for doubly defined entries
c
c eliminate leading zero entries
k0=0
05 k0=k0+1
if (v(k0).eq.0.0d0.and.k0.lt.nel) goto 05
if (v(k0).eq.0.0d0) then
nel1=0
goto 10
endif
k1=1
ij(k1,1)=ij(k0,1)
ij(k1,2)=ij(k0,2)
v(k1)=v(k0)
if(nel.gt.k0) then
do 08 k=k0+1,nel
if (v(k).ne.0.0d0) then
if(ij(k,1).ne.ij(k1,1).or.ij(k,2).ne.ij(k1,2)) then
k1=k1+1
ij(k1,1)=ij(k,1)
ij(k1,2)=ij(k,2)
v(k1)=v(k)
else
v(k1) = v(k1) + v(k)
c if(v(k1).ne.v(k)) then
c ierr=3
c return
c endif
endif
endif
08 continue
endif
nel1=k1
c check dimensions
10 continue
if(n.gt.0) then
if(n.lt.nm.or.m.lt.mm) then
ierr=1
return
endif
else
n=nm
m=mm
endif
c check check memory
if(nind.lt.m+nel1) then
ierr=2
return
endif
c compute nl the number of non zero entries for each row
i0=1
do 20 lp=1,m
i=i0-1
21 i=i+1
if(i.le.nel1) then
if(ij(i,1).eq.lp) goto 21
endif
nl=i-i0
ind(lp)=nl
i0=i
20 continue
call icopy(nel1,ij(1,2),1,ind(m+1),1)
nel=nel1
end
|