1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
subroutine dsosp(op,ma,na,a,mb,nb,b,nelb,indb,
c Copyright INRIA
$ nelc,indc,ierr)
c!purpose
c compare the elements of a full matrix A and a sparse matrix B
c!parameters
c ma,na: row and column dimension of the a matrix
c mb,nb: row and column dimension of the b matrix
c a: (ma,na) array
c b : array.
c Contain non zero elements of the B matrix
c nelb :integer: number of non zero elements of b
c nelc :integer:
c on entry maximum number of non zero elements of c
c on return number of non zero elements of c
c indb : b matrix control data:
c indb(i) 1<=i<=mb contains the number of ith row non zero elements
c of b
c indb(mb+i) 1<=i<=nelb column index of each non zero element
c
c indc : on return contains c matrix control data:
c indc(i) 1<=i<=nr contains the number of ith row non zero elements
c of c
c indc(mr+i) 1<=i<=nelc column index of each non zero element
c ierr : if non zero initial value of nelc is to small
c !
double precision a(ma,na),b(*)
integer op,nr,nc,nelb,indb(*),nelc,indc(*),ierr
c
integer jc,ka,kb,jb,i,j2
double precision t
logical dcompa,z
external dcompa
c
nr=max(ma,mb)
nc=max(na,nb)
c
nelmx=nelc
ierr=0
c jc counts elements of c.
jc = 1
c ka,kb are numbers in first i rows of a,b.
ka = 1
kb = 1
kc = 1
c jb counts elements of b.
jb = 1
c i counts rows of a,b,c.
if(ma*na.eq.1.and.mb*nb.gt.1) then
c compare all element of b with scalar a
t=a(1,1)
z=dcompa(t,0.0d0,op)
do 10 i=1,nr
indc(i)=0
nirb=indb(i)
jb=kb
jc=kc
if(nirb.eq.0) then
do 03 j=1,nc
if (dcompa(t,0.0d0,op)) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
03 continue
else
j2=indb(nr+jb)
do 04 j=1,nc
if(j2.eq.j) then
if (dcompa(t,b(jb),op)) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
if(jb-kb+1.lt.nirb) jb=jb+1
j2=indb(nr+jb)
else
if (z) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
endif
04 continue
endif
kb=kb+indb(i)
indc(i)=jc-kc
kc=jc
10 continue
elseif(ma*na.gt.1.and.mb*nb.eq.1) then
c compare all elements of a with scalar b
t=0.0d0
if(indb(1).eq.1) t=b(1)
z=dcompa(0.0d0,t,op)
do 20 i=1,nr
indc(i)=0
jc=kc
do 12 j=1,nc
if (dcompa(a(i,j),t,op)) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
12 continue
indc(i)=jc-kc
kc=jc
20 continue
else
z=dcompa(0.0d0,0.0d0,op)
do 30 i=1,nr
indc(i)=0
nirb=indb(i)
jb=kb
jc=kc
if(nirb.eq.0) then
do 23 j=1,nc
if (dcompa(a(i,j),0.0d0,op)) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
23 continue
else
j2=indb(nr+jb)
do 24 j=1,nc
if(j2.eq.j) then
if (dcompa(a(i,j),b(jb),op)) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
if(jb-kb+1.lt.nirb) jb=jb+1
j2=indb(nr+jb)
else
if (dcompa(a(i,j),0.0d0,op)) then
if(jc+1.gt.nelmx) goto 99
indc(nr+jc)=j
jc=jc+1
endif
endif
24 continue
endif
kb=kb+indb(i)
indc(i)=jc-kc
kc=jc
30 continue
endif
nelc = jc-1
return
c error messages.
99 ierr=1
c no more place for c
return
end
|