File: dspos.f

package info (click to toggle)
scilab 4.0-12
  • links: PTS
  • area: non-free
  • in suites: etch, etch-m68k
  • size: 100,640 kB
  • ctags: 57,333
  • sloc: ansic: 377,889; fortran: 242,862; xml: 179,819; tcl: 42,062; sh: 10,593; ml: 9,441; makefile: 4,377; cpp: 1,354; java: 621; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (195 lines) | stat: -rw-r--r-- 5,743 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
      subroutine dspos(op,ma,na,a,nela,inda,mb,nb,b,
c     Copyright INRIA
     $     nelc,indc,ierr)
c!purpose
c     compare the elements of a  sparse matrix A and a full matrix B.
c!parameters     
c     a : array. 
c         Contain non zero elements of the A matrix
c     ma,na: row and column dimension of the a matrix  
c     mb,nb: row and column dimension of the b matrix  
c     nela :integer: number of non zero elements of a
c     nelc :integer: 
c           on entry maximum number  of non zero elements of c
c           on return number of non zero elements of c
c     inda : a matrix control data:
c            inda(i) 1<=i<=ma contains the number of ith row non zero elements
c            of a
c            inda(ma+i) 1<=i<=nela column index of each non zero element
c     indc : on return contains c matrix control data:
c            indc(i) 1<=i<=mr contains the number of ith row non zero elements
c            of c
c            indc(mr+i) 1<=i<=nelb column index of each non zero element
c     b    :(mb,nb) matrix
c     ierr : if non zero initial value of nelc is to small
c     !
      double precision a(*),b(mb,nb)
      integer op,nr,nc,nela,inda(*),nelc,indc(*),ierr
c     
      integer jc,ka,kb,jb,i,ja,j1
      double precision t
      logical dcompa,z
      external dcompa
c     
      nr=max(ma,mb)
      nc=max(na,nb)
c     
      nelmx=nelc
      ierr=0

c     jc counts elements of c.
      jc     = 1
c     ka,kb are numbers in first i rows of a,b.
      ka     = 1
      kb     = 1
      kc     = 1
c     jb counts elements of b.
      jb     = 1
c     i counts rows of a,b,c.
      if( (ma.eq.1 .and. na.eq.1) .and. (mb.gt.1 .or. nb.gt.1) ) then
c     compare all element of b with scalar a
         t=0.0d0
         if(inda(1).eq.1) t=a(1)
         z=dcompa(t,0.0d0,op)   
         do 10 i=1,nr
            indc(i)=0
            jc=kc
            do 04 j=1,nc
               if (dcompa(t,b(i,j),op)) then
                  if(jc+1.gt.nelmx) goto 99
                  indc(nr+jc)=j
                  jc=jc+1
               endif 
 04         continue
            indc(i)=jc-kc
            kc=jc
 10      continue

      elseif((ma.gt.1 .or. na.gt.1) .and. (mb.eq.1 .and. nb.eq.1)) then
c     compare all elements of a with scalar b  
         t=b(1,1)
         z=dcompa(0.0d0,t,op)
         if (.not. z) then
            call spcmps(op, ma, na, nela, a, inda, inda(ma+1),
     $                  t, nelc, indc, indc(ma+1), ierr)
            return
         endif

         do 20 i=1,nr
            indc(i)=0
            nira=inda(i)
            ja=ka       
            jc=kc
            if(nira.eq.0) then
               if(z) then
                  if(kc+nc.gt.nelmx) goto 99
                  indc(i)=nc
                  do 11 j=1,nc
                     indc(nr+kc-1+j)=j
 11               continue
                  jc=kc+nc
               endif
            else
               j1=inda(nr+ja)
               do 12 j=1,nc
                  if(j1.eq.j) then
                     if (dcompa(a(ja),t,op)) then
                        if(jc+1.gt.nelmx) goto 99
                        indc(nr+jc)=j
                        jc=jc+1
                     endif
                     if(ja-ka+1.lt.nira) ja=ja+1
                     j1=inda(nr+ja)
                  elseif(z) then
                     if(jc+1.gt.nelmx) goto 99
                     indc(nr+jc)=j
                     jc=jc+1
                  endif
 12            continue
            endif
            indc(i)=jc-kc
            ka=ka+nira
            kc=jc
 20      continue 
      else
         z=dcompa(0.0d0,0.0d0,op)   
         do 30 i=1,nr
            indc(i)=0
            nira=inda(i)
            ja=ka
            jc=kc
            if(nira.eq.0) then
               do 22 j=1,nc
                  if (dcompa(0.0d0,b(i,j),op)) then
                     if(jc+1.gt.nelmx) goto 99
                     indc(nr+jc)=j
                     jc=jc+1
                  endif
 22            continue
            else
               j1=inda(nr+ja)
               do 24 j=1,nc
                  if(j1.eq.j) then
                     if (dcompa(a(ja),b(i,j),op)) then
                        if(jc+1.gt.nelmx) goto 99
                        indc(nr+jc)=j
                        jc=jc+1
                     endif 
                     if(ja-ka+1.lt.nira) ja=ja+1
                     j1=inda(nr+ja)
                  else
                     if (dcompa(0.0d0,b(i,j),op)) then
                        if(jc+1.gt.nelmx) goto 99
                        indc(nr+jc)=j
                        jc=jc+1
                     endif
                  endif
 24            continue
            endif
            ka=ka+inda(i)
            indc(i)=jc-kc
            kc=jc
 30      continue
      endif
      nelc  = jc-1
      return
c     error messages.
 99   ierr=1
c     no more place for c

      return 
      end


      subroutine spcmps(op, A_m, A_n, A_nel, A_R, A_mnel, A_icol,
     $                  s, C_nelmax, C_mnel, C_icol, ierr)
      
*     comparizon  A op scalaire (where "0 op s" is false)
*     added by bruno to speed up this operation
      implicit none
      integer op, A_m, A_n, A_nel, A_mnel(*), A_icol(*),
     $            C_nelmax, C_mnel(*), C_icol(*), ierr
      double precision A_R(*), s

      integer kA, kAf, kC, i, jA, k

      kAf = 0
      kC = 0
      ierr = 0

      do i = 1, A_m

         kA = kAf + 1
         kAf = kAf + A_mnel(i)
         C_mnel(i) = 0

         do k = kA, kAf
             call cmp_and_update(A_R(k), s, op, C_mnel(i),
     $                           C_icol, A_icol(k), kC, C_nelmax, ierr)
             if (ierr .eq. 1 ) return
         enddo
      enddo

      C_nelmax = kC

      end