1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
/* README :
* The routines in this file use a pointer to a Matrix
* at the Fortran Level this pointer is stored as an integer
* so we cast pointer to long int
* f_(fmat)
* long *fmat
* *fmat = (long)spCreate(*n,0,&error);
*
* At fortran level the integer must be an integer *4
* in order to store a C long
* since we are in scilab
* the pointer transmitted to f_ is an istk(il1) it can in fact contain
* something as long as a double
* Copyright ENPC (Chancelier)
*/
/*
* IMPORTS
*
* >>> Import descriptions:
* spConfig.h
* Macros that customize the sparse matrix routines.
* spmatrix.h
* Macros and declarations to be imported by the user.
* spDefs.h
* Matrix type and macro definitions for the sparse matrix routines.
*/
#define spINSIDE_SPARSE
#include "spConfig.h"
#include "spmatrix.h"
#include "spDefs.h"
#include "../machine.h"
/*
*
* lufact1 >>> Creation and LU factorisation of a sparse matrix
* Entry <<
* val,rc
* arrays of size k and kx2 a(rc(i),rc(*k+i))=val(i)
* for i=0,(*k-1)
* *n : size of the created square matrix
* *k : number of given values
* *eps : The machine precision number
* Return >>
* fmat : pointer to a long int which is a cast of an adress
* *nrank : The numerical rank
*/
static void
spFixThresold(eMatrix,eps,releps)
char *eMatrix;
double eps,releps;
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
Matrix->AbsThreshold = eps;
Matrix->RelThreshold = releps;
}
static void
spGetNumRank(eMatrix,n)
char *eMatrix;
int *n;
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
*n = Matrix->NumRank;
}
extern void cerro();
void
C2F(lufact1)(val,lln,col,n,nel,fmat,eps,releps,nrank,ierr)
double *val,*eps,*releps;
long *fmat;
int *n,*nel,*nrank,*lln,*col,*ierr;
{
int error,i,i0,i1,k,j;
spREAL *pelement;
*ierr = 0;
*fmat = (long)spCreate(*n,0,&error);
if (error != spOKAY) {
*ierr = 1;
return;
}
i0=0;
i1=i0;
i=1;
for (k = 0 ;k < *nel; k++) {
i0=i0+1;
while (i0-i1 > lln[i-1]) {
i1=i0;
i=i+1;
i0=i0+1;
}
j=col[k];
pelement = spGetElement((char*) *fmat,i,j);
if (pelement == 0) {
*ierr=2;
return;
}
spADD_REAL_ELEMENT(pelement,(spREAL)(val[k]));
}
/* Fix the AbsThresold with scilex %eps */
spFixThresold((char*) *fmat,*eps,*releps);
/* spPrint((char *) *fmat,1,1,1); */
error = spFactor((char*) *fmat);
spGetNumRank((char *) *fmat,nrank);
switch (error) {
case spZERO_DIAG:
cerro("zero_diag: A zero was encountered on the diagonal the matrix ");
break;
case spNO_MEMORY:
*ierr=3;
break;
case spSINGULAR:
*ierr=-1; /*Singular matrix" */
break;
case spSMALL_PIVOT:
*ierr=-2; /* matrix is singular at precision level */
break;
}
}
/*
* lusolve1 >>> Solves fmat*x=b
* *fmat : a pointer to the sparse matrix factored by lufact
* b,v
* two arrays of size n the matrix size
*/
extern void Cout(char *str);
static int
spSolveCheck(eMatrix)
char *eMatrix;
{
MatrixPtr Matrix = (MatrixPtr) eMatrix;
if (Matrix->Error == spSINGULAR OR Matrix->Error == spSMALL_PIVOT )
{
Cout("A matrix is singular or ill conditioned ");
Cout("result will be fine only if b is in Im(A)");
}
return(1);
}
void C2F(lusolve1)(fmat,b,x)
double *b, *x;
long *fmat;
{
/* if (spSolveCheck((char *) *fmat) != 0)*/
spSolve((char*) *fmat,(spREAL*)b,(spREAL*)x);
}
/*
* ludel1 >>> delete sparse matrix
* *fmat : a pointer to the sparse matrix factored by lufact
*/
void C2F(ludel1)(fmat)
long *fmat;
{
spDestroy((char*) *fmat);
}
/*
* lusize >>> returns in n the size of the sparse matrix
* *fmat : a pointer to the sparse matrix factored by lufact
*/
static void
spSize(eMatrix,n)
char *eMatrix;
int *n;
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
*n=Matrix->Size;
}
void C2F(lusize)(fmat,n)
long *fmat;
int *n;
{
spSize((char *) *fmat,n);
}
/*
* luget1 >>> extract the LU coded matrix into a full array
* sigg,sigd :
* two arrays of size n which code permutations
* lu :
* an array coded matrix of size nxn where lu will be stored
*/
/* filling right permutation */
GetSigD(Matrix,indsigd,sigd)
MatrixPtr Matrix;
double sigd[];
int indsigd[];
{
int I,J,mc=0,last=0;
int Size=Matrix->Size;
for (I = 1; I <= Size; I++)
{
indsigd[I-1]=1;
indsigd[Size+I-1]= Matrix->IntToExtColMap[I];
sigd[I-1]=1.0;
}
/* counting missing colums */
for (I = 1; I <= Size; I++)
if (Matrix->ExtToIntColMap[I]== -1) mc++;
/* filling missing colums */
if (mc != 0)
{
for (I = Size -(mc)+1 ; I <= Size; I++)
{
for ( J=last+1; J <=Size; J++)
{
if (Matrix->ExtToIntColMap[J]==-1)
{
last=J;break;
}
}
indsigd[I-1]=1;
indsigd[Size+I-1]= last;
}
}
}
/* filling left permutation */
GetSigG(Matrix,indsigg,sigg)
MatrixPtr Matrix;
double sigg[];
int indsigg[];
{
int Size=Matrix->Size;
int I,J,mc=0,last=0;
/* counting missing Rows*/
for (I = 1; I <= Size; I++)
if (Matrix->ExtToIntRowMap[I]== -1) mc++;
for (I = 1; I <= Size-mc ; I++)
{
indsigg[I-1]= 1;
indsigg[Size+Matrix->IntToExtRowMap[I]-1]=I;
sigg[I-1]=1;
}
/* filling missing Rows */
if (mc != 0)
{
for (I = Size -(mc)+1 ; I <= Size; I++)
{
for ( J=last+1; J <=Size; J++)
{
if (Matrix->ExtToIntRowMap[J]==-1)
{
last=J;break;
}
}
indsigg[I-1]= 1;
indsigg[Size+last-1]=I;
sigg[I-1]=1;
}
}
}
static void
spLuget(eMatrix,indP,P,indl,l,indu,u,indQ,Q)
char *eMatrix;
int *indP,*indl,*indu,*indQ;
double *P,*Q,*l,*u;
{
int I,J;
int lsize,usize;
MatrixPtr Matrix = (MatrixPtr) eMatrix;
ElementPtr pElement;
int Size;
Size = Matrix->Size;
GetSigD(Matrix,indQ,Q);
GetSigG(Matrix,indP,P);
for (J = 1; J <= Size ; J++)
{
indl[J-1] = 0;
indu[J-1] = 0;
}
lsize=0;
usize=0;
for (I = 1; I <= Size ; I++)
{
indu[I-1]=indu[I-1]+1;
indu[Size+usize]=I;
u[usize]=1.0;
usize=usize+1;
pElement = Matrix->FirstInRow[I];
while ( pElement != NULL )
{
J = pElement->Col;
if (I >= J) {
indl[I-1] = indl[I-1]+1;
indl[Size+lsize]=J;
l[lsize]=(double) pElement->Real ;
lsize=lsize+1;
}
else {
indu[I-1] = indu[I-1]+1;
indu[Size+usize]=J;
u[usize]=(double) pElement->Real ;
usize=usize+1;
}
pElement = pElement->NextInRow;
};
};
}
void C2F(luget1)(fmat,indP,P,indl,l,indu,u,indQ,Q)
long *fmat;
double *P,*Q,*l,*u;
int *indP,*indl,*indu,*indQ;
{
spLuget((char *) *fmat,indP,P,indl,l,indu,u,indQ,Q);
}
/*
* lusiz1 >>> extract the L and U number of non zero elements
* lsize and usize
*/
static void
spLusiz(eMatrix,lsize,usize)
char *eMatrix;
int *lsize,*usize;
{
int J;
MatrixPtr Matrix = (MatrixPtr) eMatrix;
ElementPtr pElement;
int Size;
Size = Matrix->Size;
*lsize=0;
*usize=Size;
for (J = 1; J <= Size ; J++)
{
pElement = Matrix->FirstInCol[J];
while ( pElement != NULL )
{
if (pElement->Row >= J)
*lsize=*lsize+1;
else
*usize=*usize+1;
pElement = pElement->NextInCol;
};
};
}
void C2F(lusiz1)(fmat,lsize,usize)
long *fmat;
int *lsize,*usize;
{
spLusiz((char *) *fmat,lsize,usize);
}
|