1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
|
/*
* MATRIX ALLOCATION MODULE
*
* Author: Advising professor:
* Kenneth S. Kundert Alberto Sangiovanni-Vincentelli
* UC Berkeley
*
* This file contains the allocation and deallocation routines for the
* sparse matrix routines.
*
* >>> User accessible functions contained in this file:
* spCreate
* spDestroy
* spError
* spWhereSingular
* spGetSize
* spSetReal
* spSetComplex
* spFillinCount
* spElementCount
*
* >>> Other functions contained in this file:
* spcGetElement
* InitializeElementBlocks
* spcGetFillin
* RecordAllocation
* AllocateBlockOfAllocationList
* EnlargeMatrix
* ExpandTranslationArrays
*/
/*
* Revision and copyright information.
*
* Copyright (c) 1985,86,87,88
* by Kenneth S. Kundert and the University of California.
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the copyright notices appear in all copies and
* supporting documentation and that the authors and the University of
* California are properly credited. The authors and the University of
* California make no representations as to the suitability of this
* software for any purpose. It is provided `as is', without express
* or implied warranty.
*/
#ifndef lint
static char copyright[] =
"Sparse1.3: Copyright (c) 1985,86,87,88 by Kenneth S. Kundert";
static char RCSid[] =
"@(#)$Header: /usr/local/cvsroot/scilab/routines/sparse/spAllocate.c,v 1.2 2004/02/28 16:43:21 cornet Exp $";
#endif
/*
* IMPORTS
*
* >>> Import descriptions:
* spConfig.h
* Macros that customize the sparse matrix routines.
* spmatrix.h
* Macros and declarations to be imported by the user.
* spDefs.h
* Matrix type and macro definitions for the sparse matrix routines.
*/
#define spINSIDE_SPARSE
#include "spConfig.h"
#include "spmatrix.h"
#include "spDefs.h"
static InitializeElementBlocks();
static RecordAllocation();
static AllocateBlockOfAllocationList();
/*
* MATRIX ALLOCATION
*
* Allocates and initializes the data structures associated with a matrix.
*
* >>> Returned:
* A pointer to the matrix is returned cast into the form of a pointer to
* a character. This pointer is then passed and used by the other matrix
* routines to refer to a particular matrix. If an error occurs, the NULL
* pointer is returned.
*
* >>> Arguments:
* Size <input> (int)
* Size of matrix or estimate of size of matrix if matrix is EXPANDABLE.
* Complex <input> (int)
* Type of matrix. If Complex is 0 then the matrix is real, otherwise
* the matrix will be complex. Note that if the routines are not set up
* to handle the type of matrix requested, then a spPANIC error will occur.
* Further note that if a matrix will be both real and complex, it must
* be specified here as being complex.
* pError <output> (int *)
* Returns error flag, needed because function spError() will not work
* correctly if spCreate() returns NULL.
*
* >>> Local variables:
* AllocatedSize (int)
* The size of the matrix being allocated.
* Matrix (MatrixPtr)
* A pointer to the matrix frame being created.
*
* >>> Possible errors:
* spNO_MEMORY
* spPANIC
* Error is cleared in this routine.
*/
char *
spCreate( Size, Complex, pError )
int Size, *pError;
BOOLEAN Complex;
{
register unsigned SizePlusOne;
register MatrixPtr Matrix;
register int I;
int AllocatedSize;
/* Begin `spCreate'. */
/* Clear error flag. */
*pError = spOKAY;
/* Test for valid size. */
if ((Size < 0) OR (Size == 0 AND NOT EXPANDABLE))
{ *pError = spPANIC;
return NULL;
}
/* Test for valid type. */
#if NOT spCOMPLEX
if (Complex)
{ *pError = spPANIC;
return NULL;
}
#endif
#if NOT REAL
if (NOT Complex)
{ *pError = spPANIC;
return NULL;
}
#endif
/* Create Matrix. */
AllocatedSize = MAX( Size, MINIMUM_ALLOCATED_SIZE );
SizePlusOne = (unsigned)(AllocatedSize + 1);
if ((Matrix = ALLOC(struct MatrixFrame, 1)) == NULL)
{ *pError = spNO_MEMORY;
return NULL;
}
/* Initialize matrix */
Matrix->ID = SPARSE_ID;
Matrix->Complex = Complex;
Matrix->PreviousMatrixWasComplex = Complex;
Matrix->Factored = NO;
Matrix->Elements = 0;
Matrix->Error = *pError;
Matrix->Fillins = 0;
Matrix->Reordered = NO;
Matrix->NeedsOrdering = YES;
Matrix->NumberOfInterchangesIsOdd = NO;
Matrix->Partitioned = NO;
Matrix->RowsLinked = NO;
Matrix->InternalVectorsAllocated = NO;
Matrix->SingularCol = 0;
Matrix->SingularRow = 0;
Matrix->Size = Size;
Matrix->AllocatedSize = AllocatedSize;
Matrix->ExtSize = Size;
Matrix->AllocatedExtSize = AllocatedSize;
Matrix->CurrentSize = 0;
Matrix->ExtToIntColMap = NULL;
Matrix->ExtToIntRowMap = NULL;
Matrix->IntToExtColMap = NULL;
Matrix->IntToExtRowMap = NULL;
Matrix->MarkowitzRow = NULL;
Matrix->MarkowitzCol = NULL;
Matrix->MarkowitzProd = NULL;
Matrix->DoCmplxDirect = NULL;
Matrix->DoRealDirect = NULL;
Matrix->Intermediate = NULL;
Matrix->RelThreshold = DEFAULT_THRESHOLD;
Matrix->AbsThreshold = 0.0;
Matrix->TopOfAllocationList = NULL;
Matrix->RecordsRemaining = 0;
Matrix->ElementsRemaining = 0;
Matrix->FillinsRemaining = 0;
RecordAllocation( Matrix, (char *)Matrix );
if (Matrix->Error == spNO_MEMORY) goto MemoryError;
/* Take out the trash. */
Matrix->TrashCan.Real = 0.0;
#if spCOMPLEX
Matrix->TrashCan.Imag = 0.0;
#endif
Matrix->TrashCan.Row = 0;
Matrix->TrashCan.Col = 0;
Matrix->TrashCan.NextInRow = NULL;
Matrix->TrashCan.NextInCol = NULL;
#if INITIALIZE
Matrix->TrashCan.pInitInfo = NULL;
#endif
/* Allocate space in memory for Diag pointer vector. */
CALLOC( Matrix->Diag, ElementPtr, SizePlusOne);
if (Matrix->Diag == NULL)
goto MemoryError;
/* Allocate space in memory for FirstInCol pointer vector. */
CALLOC( Matrix->FirstInCol, ElementPtr, SizePlusOne);
if (Matrix->FirstInCol == NULL)
goto MemoryError;
/* Allocate space in memory for FirstInRow pointer vector. */
CALLOC( Matrix->FirstInRow, ElementPtr, SizePlusOne);
if (Matrix->FirstInRow == NULL)
goto MemoryError;
/* Allocate space in memory for IntToExtColMap vector. */
if (( Matrix->IntToExtColMap = ALLOC(int, SizePlusOne)) == NULL)
goto MemoryError;
/* Allocate space in memory for IntToExtRowMap vector. */
if (( Matrix->IntToExtRowMap = ALLOC(int, SizePlusOne)) == NULL)
goto MemoryError;
/* Initialize MapIntToExt vectors. */
for (I = 1; I <= AllocatedSize; I++)
{ Matrix->IntToExtRowMap[I] = I;
Matrix->IntToExtColMap[I] = I;
}
#if TRANSLATE
/* Allocate space in memory for ExtToIntColMap vector. */
if (( Matrix->ExtToIntColMap = ALLOC(int, SizePlusOne)) == NULL)
goto MemoryError;
/* Allocate space in memory for ExtToIntRowMap vector. */
if (( Matrix->ExtToIntRowMap = ALLOC(int, SizePlusOne)) == NULL)
goto MemoryError;
/* Initialize MapExtToInt vectors. */
for (I = 1; I <= AllocatedSize; I++)
{ Matrix->ExtToIntColMap[I] = -1;
Matrix->ExtToIntRowMap[I] = -1;
}
Matrix->ExtToIntColMap[0] = 0;
Matrix->ExtToIntRowMap[0] = 0;
#endif
/* Allocate space for fill-ins and initial set of elements. */
InitializeElementBlocks( Matrix, SPACE_FOR_ELEMENTS*AllocatedSize,
SPACE_FOR_FILL_INS*AllocatedSize );
if (Matrix->Error == spNO_MEMORY)
goto MemoryError;
return (char *)Matrix;
MemoryError:
/* Deallocate matrix and return no pointer to matrix if there is not enough
memory. */
*pError = spNO_MEMORY;
spDestroy( (char *)Matrix);
return NULL;
}
/*
* ELEMENT ALLOCATION
*
* This routine allocates space for matrix elements. It requests large blocks
* of storage from the system and doles out individual elements as required.
* This technique, as opposed to allocating elements individually, tends to
* speed the allocation process.
*
* >>> Returned:
* A pointer to an element.
*
* >>> Arguments:
* Matrix <input> (MatrixPtr)
* Pointer to matrix.
*
* >>> Local variables:
* pElement (ElementPtr)
* A pointer to the first element in the group of elements being allocated.
*
* >>> Possible errors:
* spNO_MEMORY
*/
ElementPtr
spcGetElement( Matrix )
MatrixPtr Matrix;
{
ElementPtr pElement;
/* Begin `spcGetElement'. */
/* Allocate block of MatrixElements if necessary. */
if (Matrix->ElementsRemaining == 0)
{ pElement = ALLOC(struct MatrixElement, ELEMENTS_PER_ALLOCATION);
RecordAllocation( Matrix, (char *)pElement );
if (Matrix->Error == spNO_MEMORY) return NULL;
Matrix->ElementsRemaining = ELEMENTS_PER_ALLOCATION;
Matrix->NextAvailElement = pElement;
}
/* Update Element counter and return pointer to Element. */
Matrix->ElementsRemaining--;
return Matrix->NextAvailElement++;
}
/*
* ELEMENT ALLOCATION INITIALIZATION
*
* This routine allocates space for matrix fill-ins and an initial set of
* elements. Besides being faster than allocating space for elements one
* at a time, it tends to keep the fill-ins physically close to the other
* matrix elements in the computer memory. This keeps virtual memory paging
* to a minimum.
*
* >>> Arguments:
* Matrix <input> (MatrixPtr)
* Pointer to the matrix.
* InitialNumberOfElements <input> (int)
* This number is used as the size of the block of memory, in
* MatrixElements, reserved for elements. If more than this number of
* elements are generated, then more space is allocated later.
* NumberOfFillinsExpected <input> (int)
* This number is used as the size of the block of memory, in
* MatrixElements, reserved for fill-ins. If more than this number of
* fill-ins are generated, then more space is allocated, but they may
* not be physically close in computer's memory.
*
* >>> Local variables:
* pElement (ElementPtr)
* A pointer to the first element in the group of elements being allocated.
*
* >>> Possible errors:
* spNO_MEMORY
*/
static
InitializeElementBlocks( Matrix, InitialNumberOfElements,
NumberOfFillinsExpected )
MatrixPtr Matrix;
int InitialNumberOfElements, NumberOfFillinsExpected;
{
ElementPtr pElement;
/* Begin `InitializeElementBlocks'. */
/* Allocate block of MatrixElements for elements. */
pElement = ALLOC(struct MatrixElement, InitialNumberOfElements);
RecordAllocation( Matrix, (char *)pElement );
if (Matrix->Error == spNO_MEMORY) return 0;
Matrix->ElementsRemaining = InitialNumberOfElements;
Matrix->NextAvailElement = pElement;
/* Allocate block of MatrixElements for fill-ins. */
pElement = ALLOC(struct MatrixElement, NumberOfFillinsExpected);
RecordAllocation( Matrix, (char *)pElement );
if (Matrix->Error == spNO_MEMORY) return 0;
Matrix->FillinsRemaining = NumberOfFillinsExpected;
Matrix->NextAvailFillin = pElement;
/* Allocate a fill-in list structure. */
Matrix->FirstFillinListNode = ALLOC(struct FillinListNodeStruct,1);
RecordAllocation( Matrix, (char *)Matrix->FirstFillinListNode );
if (Matrix->Error == spNO_MEMORY) return 0;
Matrix->LastFillinListNode = Matrix->FirstFillinListNode;
Matrix->FirstFillinListNode->pFillinList = pElement;
Matrix->FirstFillinListNode->NumberOfFillinsInList =NumberOfFillinsExpected;
Matrix->FirstFillinListNode->Next = NULL;
return 0;
}
/*
* FILL-IN ALLOCATION
*
* This routine allocates space for matrix fill-ins. It requests large blocks
* of storage from the system and doles out individual elements as required.
* This technique, as opposed to allocating elements individually, tends to
* speed the allocation process.
*
* >>> Returned:
* A pointer to the fill-in.
*
* >>> Arguments:
* Matrix <input> (MatrixPtr)
* Pointer to matrix.
*
* >>> Possible errors:
* spNO_MEMORY
*/
ElementPtr
spcGetFillin( Matrix )
MatrixPtr Matrix;
{
struct FillinListNodeStruct *pListNode;
ElementPtr pFillins;
/* Begin `spcGetFillin'. */
#if NOT STRIP OR LINT
if (Matrix->FillinsRemaining == 0)
return spcGetElement( Matrix );
#endif
#if STRIP OR LINT
if (Matrix->FillinsRemaining == 0)
{ pListNode = Matrix->LastFillinListNode;
/* First see if there are any stripped fill-ins left. */
if (pListNode->Next != NULL)
{ Matrix->LastFillinListNode = pListNode = pListNode->Next;
Matrix->FillinsRemaining = pListNode->NumberOfFillinsInList;
Matrix->NextAvailFillin = pListNode->pFillinList;
}
else
{
/* Allocate block of fill-ins. */
pFillins = ALLOC(struct MatrixElement, ELEMENTS_PER_ALLOCATION);
RecordAllocation( Matrix, (char *)pFillins );
if (Matrix->Error == spNO_MEMORY) return NULL;
Matrix->FillinsRemaining = ELEMENTS_PER_ALLOCATION;
Matrix->NextAvailFillin = pFillins;
/* Allocate a fill-in list structure. */
pListNode->Next = ALLOC(struct FillinListNodeStruct,1);
RecordAllocation( Matrix, (char *)pListNode->Next );
if (Matrix->Error == spNO_MEMORY) return NULL;
Matrix->LastFillinListNode = pListNode = pListNode->Next;
pListNode->pFillinList = pFillins;
pListNode->NumberOfFillinsInList = ELEMENTS_PER_ALLOCATION;
pListNode->Next = NULL;
}
}
#endif
/* Update Fill-in counter and return pointer to Fill-in. */
Matrix->FillinsRemaining--;
return Matrix->NextAvailFillin++;
}
/*
* RECORD A MEMORY ALLOCATION
*
* This routine is used to record all memory allocations so that the memory
* can be freed later.
*
* >>> Arguments:
* Matrix <input> (MatrixPtr)
* Pointer to the matrix.
* AllocatedPtr <input> (char *)
* The pointer returned by malloc or calloc. These pointers are saved in
* a list so that they can be easily freed.
*
* >>> Possible errors:
* spNO_MEMORY
*/
static
RecordAllocation( Matrix, AllocatedPtr )
MatrixPtr Matrix;
char *AllocatedPtr;
{
/* Begin `RecordAllocation'. */
/*
* If Allocated pointer is NULL, assume that malloc returned a NULL pointer,
* which indicates a spNO_MEMORY error.
*/
if (AllocatedPtr == NULL)
{ Matrix->Error = spNO_MEMORY;
return 0;
}
/* Allocate block of MatrixElements if necessary. */
if (Matrix->RecordsRemaining == 0)
{ AllocateBlockOfAllocationList( Matrix );
if (Matrix->Error == spNO_MEMORY)
{ FREE(AllocatedPtr);
return 0;
}
}
/* Add Allocated pointer to Allocation List. */
(++Matrix->TopOfAllocationList)->AllocatedPtr = AllocatedPtr;
Matrix->RecordsRemaining--;
return 0;
}
/*
* ADD A BLOCK OF SLOTS TO ALLOCATION LIST
*
* This routine increases the size of the allocation list.
*
* >>> Arguments:
* Matrix <input> (MatrixPtr)
* Pointer to the matrix.
*
* >>> Local variables:
* ListPtr (AllocationListPtr)
* Pointer to the list that contains the pointers to segments of memory
* that were allocated by the operating system for the current matrix.
*
* >>> Possible errors:
* spNO_MEMORY
*/
static
AllocateBlockOfAllocationList( Matrix )
MatrixPtr Matrix;
{
register int I;
register AllocationListPtr ListPtr;
/* Begin `AllocateBlockOfAllocationList'. */
/* Allocate block of records for allocation list. */
ListPtr = ALLOC(struct AllocationRecord, (ELEMENTS_PER_ALLOCATION+1));
if (ListPtr == NULL)
{ Matrix->Error = spNO_MEMORY;
return 0;
}
/* String entries of allocation list into singly linked list. List is linked
such that any record points to the one before it. */
ListPtr->NextRecord = Matrix->TopOfAllocationList;
Matrix->TopOfAllocationList = ListPtr;
ListPtr += ELEMENTS_PER_ALLOCATION;
for (I = ELEMENTS_PER_ALLOCATION; I > 0; I--)
{ ListPtr->NextRecord = ListPtr - 1;
ListPtr--;
}
/* Record allocation of space for allocation list on allocation list. */
Matrix->TopOfAllocationList->AllocatedPtr = (char *)ListPtr;
Matrix->RecordsRemaining = ELEMENTS_PER_ALLOCATION;
return 0;
}
/*
* MATRIX DEALLOCATION
*
* Deallocates pointers and elements of Matrix.
*
* >>> Arguments:
* Matrix <input> (char *)
* Pointer to the matrix frame which is to be removed from memory.
*
* >>> Local variables:
* ListPtr (AllocationListPtr)
* Pointer into the linked list of pointers to allocated data structures.
* Points to pointer to structure to be freed.
* NextListPtr (AllocationListPtr)
* Pointer into the linked list of pointers to allocated data structures.
* Points to the next pointer to structure to be freed. This is needed
* because the data structure to be freed could include the current node
* in the allocation list.
*/
void
spDestroy( eMatrix )
register char *eMatrix;
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
register AllocationListPtr ListPtr, NextListPtr;
/* Begin `spDestroy'. */
ASSERT( IS_SPARSE( Matrix ) );
/* Deallocate the vectors that are located in the matrix frame. */
FREE( Matrix->IntToExtColMap );
FREE( Matrix->IntToExtRowMap );
FREE( Matrix->ExtToIntColMap );
FREE( Matrix->ExtToIntRowMap );
FREE( Matrix->Diag );
FREE( Matrix->FirstInRow );
FREE( Matrix->FirstInCol );
FREE( Matrix->MarkowitzRow );
FREE( Matrix->MarkowitzCol );
FREE( Matrix->MarkowitzProd );
FREE( Matrix->DoCmplxDirect );
FREE( Matrix->DoRealDirect );
FREE( Matrix->Intermediate );
/* Sequentially step through the list of allocated pointers freeing pointers
* along the way. */
ListPtr = Matrix->TopOfAllocationList;
while (ListPtr != NULL )
{
char *LocPtr;
/* dans certain cas le pointeur ds la zone a desalouer
se trouve lui meme ds la dite zone en fait quand
( ListPtr == ListPtr->AllocatedPtr )
donc un free(x) suivit de x=0
fait que l'on essaye d'ecrire ds une zone que l'on vient de desalouer
ce qui plante sur linux
fprintf(stderr,"Warning bad FREE\n");
je regle le probleme en mettant a zero avant le free !
*/
NextListPtr = ListPtr->NextRecord;
/* BUGUED : FREE( ListPtr->AllocatedPtr) */
LocPtr=ListPtr->AllocatedPtr;
ListPtr->AllocatedPtr= NULL;
if ( LocPtr != NULL) free(LocPtr);
ListPtr = NextListPtr;
}
return;
}
/*
* RETURN MATRIX ERROR STATUS
*
* This function is used to determine the error status of the given matrix.
*
* >>> Returned:
* The error status of the given matrix.
*
* >>> Arguments:
* eMatrix <input> (char *)
* The matrix for which the error status is desired.
*/
int
spError( eMatrix )
char *eMatrix;
{
/* Begin `spError'. */
if (eMatrix != NULL)
{ ASSERT(((MatrixPtr)eMatrix)->ID == SPARSE_ID);
return ((MatrixPtr)eMatrix)->Error;
}
else return spNO_MEMORY; /* This error may actually be spPANIC,
* no way to tell. */
}
/*
* WHERE IS MATRIX SINGULAR
*
* This function returns the row and column number where the matrix was
* detected as singular or where a zero was detected on the diagonal.
*
* >>> Arguments:
* eMatrix <input> (char *)
* The matrix for which the error status is desired.
* pRow <output> (int *)
* The row number.
* pCol <output> (int *)
* The column number.
*/
void
spWhereSingular( eMatrix, pRow, pCol )
char *eMatrix;
int *pRow, *pCol;
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
/* Begin `spWhereSingular'. */
ASSERT( IS_SPARSE( Matrix ) );
if (Matrix->Error == spSINGULAR OR Matrix->Error == spZERO_DIAG)
{ *pRow = Matrix->SingularRow;
*pCol = Matrix->SingularCol;
}
else *pRow = *pCol = 0;
return;
}
/*
* MATRIX SIZE
*
* Returns the size of the matrix. Either the internal or external size of
* the matrix is returned.
*
* >>> Arguments:
* eMatrix <input> (char *)
* Pointer to matrix.
* External <input> (BOOLEAN)
* If External is set true, the external size , i.e., the value of the
* largest external row or column number encountered is returned.
* Otherwise the true size of the matrix is returned. These two sizes
* may differ if the TRANSLATE option is set true.
*/
int
spGetSize( eMatrix, External )
char *eMatrix;
BOOLEAN External;
{
MatrixPtr Matrix = (MatrixPtr)eMatrix;
/* Begin `spGetSize'. */
ASSERT( IS_SPARSE( Matrix ) );
#if TRANSLATE
if (External)
return Matrix->ExtSize;
else
return Matrix->Size;
#else
return Matrix->Size;
#endif
}
/*
* SET MATRIX COMPLEX OR REAL
*
* Forces matrix to be either real or complex.
*
* >>> Arguments:
* eMatrix <input> (char *)
* Pointer to matrix.
*/
void
spSetReal( eMatrix )
char *eMatrix;
{
/* Begin `spSetReal'. */
ASSERT( IS_SPARSE( (MatrixPtr)eMatrix ) AND REAL);
((MatrixPtr)eMatrix)->Complex = NO;
return;
}
void
spSetComplex( eMatrix )
char *eMatrix;
{
/* Begin `spSetComplex'. */
ASSERT( IS_SPARSE( (MatrixPtr)eMatrix ) AND spCOMPLEX);
((MatrixPtr)eMatrix)->Complex = YES;
return;
}
/*
* ELEMENT OR FILL-IN COUNT
*
* Two functions used to return simple statistics. Either the number
* of total elements, or the number of fill-ins can be returned.
*
* >>> Arguments:
* eMatrix <input> (char *)
* Pointer to matrix.
*/
int
spFillinCount( eMatrix )
char *eMatrix;
{
/* Begin `spFillinCount'. */
ASSERT( IS_SPARSE( (MatrixPtr)eMatrix ) );
return ((MatrixPtr)eMatrix)->Fillins;
}
int
spElementCount( eMatrix )
char *eMatrix;
{
/* Begin `spElementCount'. */
ASSERT( IS_SPARSE( (MatrixPtr)eMatrix ) );
return ((MatrixPtr)eMatrix)->Elements;
}
|