1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
* this file contains some utility routines for some sparse
* operations (extraction / insertion)
*
* I will comment a little more in the future
* (bruno december 2004)
*
subroutine set_perm_id(p, n)
implicit none
integer p(*), n
integer i
do i = 1, n
p(i) = i
enddo
end ! subroutine set_perm_id
subroutine insert_row(ka, A_it, A_mnel, A_icol, A_R, A_I,
$ kc, C_it, C_mnel, C_icol, C_R, C_I,
$ j, p, nj, ib, B_m, B_it, B_R, B_I,
$ B_is_scalar, nelmax, ierr)
* ka, kc : pointent sur les debuts de ligne de A et C
implicit none
integer ka, A_it, A_mnel, A_icol(*), kc, C_it, C_mnel, C_icol(*),
$ j(*), p(*), nj, it, ib, nelmax, ierr, B_m, B_it
logical B_is_scalar
double precision A_R(*), A_i(*), C_R(*), C_I(*),
$ B_R(B_m,*), B_I(B_m,*)
* local vars
integer i, j1, j2, jp, k, kamax
double precision Bij_R, Bij_I
* external functions and subroutines
external insert_j1j2
if (B_is_scalar) then
Bij_R = B_R(1,1)
if (B_it .eq. 1) Bij_I = B_I(1,1)
endif
* indice max pour la ligne de A
kamax = ka + A_mnel - 1
j1 = 1
k = 1
* loop on k from 1 to nj but some values must be skiped
100 jp = j(p(k))
if ( k .lt. nj ) then
if ( j(p(k+1)) .eq. jp ) then
k = k+1
goto 100
endif
endif
j2 = jp - 1
call insert_j1j2(j1, j2, A_it, A_icol, A_R, A_I, ka,
$ kamax, C_it, C_mnel, C_icol, C_R, C_I, kc,
$ nelmax, ierr)
if (ierr .ne. 0) return
! insertion de B ...
if (kc .gt. nelmax) then ! test if there is enough memory
ierr = -1
return
endif
if ( .not. B_is_scalar ) then
Bij_R = B_R(ib,p(k))
if (B_it .eq. 1) Bij_I = B_I(ib,p(k))
endif
if (C_it .eq. 0) then ! real case
if ( Bij_R .ne. 0 ) then
C_icol(kc) = jp
C_mnel = C_mnel + 1
C_R(kc) = Bij_R
kc = kc + 1
endif
elseif (B_it .eq. 0) then ! complex case but B is real
if ( Bij_R .ne. 0.d0 ) then
C_R(kc) = Bij_R
C_I(kc) = 0.d0
C_icol(kc) = jp
C_mnel = C_mnel + 1
kc = kc + 1
endif
else ! complex case , B complex
if ( Bij_R.ne.0.d0 .or. Bij_I.ne.0.d0 ) then
C_R(kc) = Bij_R
C_I(kc) = Bij_I
C_icol(kc) = jp
C_mnel = C_mnel + 1
kc = kc + 1
endif
endif
j1 = jp + 1
k = k + 1
if (k .le. nj) goto 100
* endloop on k
j2 = A_icol(kamax)
call insert_j1j2(j1, j2, A_it, A_icol, A_R, A_I, ka,
$ kamax, C_it, C_mnel, C_icol, C_R, C_I, kc,
$ nelmax, ierr)
end ! subroutine insert_row
subroutine copy_sprow(i1,i2, ka, A_it, A_mnel, A_icol, A_R, A_I,
$ kc, C_it, C_mnel, C_icol, C_R, C_I,
$ nelmax, ierr)
*
* recopie les lignes i1 i2 de A sur C
*
implicit none
integer i1, i2, ka, A_it, A_mnel(*), A_icol(*),
$ kc, C_it, C_mnel(*), C_icol(*),
$ it, nelmax, ierr
double precision A_R(*), A_I(*), C_R(*), C_I(*)
* local vars
integer nbe, i, n
* external functions and subroutines
external icopy, unsfdcopy
if (i1 .gt. i2) return ! a mettre au niveau de l'appelant ?
nbe = 0
do i = i1, i2
nbe = nbe + A_mnel(i)
enddo
if (kc + nbe .gt. nelmax) then
ierr = -1
return
endif
n = i2 - i1 + 1
call icopy(n, A_mnel(i1), 1, C_mnel(i1), 1)
call icopy(nbe, A_icol(ka), 1, C_icol(kc), 1)
if (C_it .ge. 0) then
call unsfdcopy(nbe, A_R(ka), 1, C_R(kc), 1)
if (C_it .eq. 1) then ! C is complex
if (A_it .eq. 1) then ! A is complex
call unsfdcopy(nbe, A_I(ka), 1, C_I(kc), 1)
else ! A is real
call dset(nbe, 0.d0, C_I(kc), 1)
endif
endif
endif
! mise jour de ka et kc
ka = ka + nbe
kc = kc + nbe
end ! subroutine copy_sprow
subroutine insert_j1j2(j1, j2, A_it, A_icol, A_R, A_I, ka, kamax,
$ C_it, C_mnel, C_icol, C_R, C_I, kc,
$ nelmax, ierr)
*
* insere les coefs de la ligne A dans C dont les indices de
* colonnes sont compris entre j1 et j2
implicit none
integer j1, j2, A_it, A_icol(*), ka, kamax, C_it, C_mnel,
$ C_icol(*), kc, nelmax, ierr
double precision A_R(*), A_I(*), C_R(*), C_I(*)
* local var
integer j
if ( ka .gt. kamax ) return
* goto the first element with column index >= j1
do while ( A_icol(ka) .lt. j1 )
ka = ka + 1
if (ka .gt. kamax) return
enddo
j = A_icol(ka)
do while (j .le. j2) ! add a new element to C
if (kc .gt. nelmax) then ! but test if there is enough memory before
ierr = -1
return
endif
C_icol(kc) = j
C_R(kc) = A_R(ka)
if ( C_it .eq. 1 ) then ! C is complex
if ( A_it .eq. 0 ) then ! A is real
C_I(kc) = 0.d0
else ! A is complex
C_I(kc) = A_I(ka)
endif
endif
kc = kc + 1 ! number of the next element of C
C_mnel = C_mnel + 1 ! increment the number of nnz of the row for C
ka = ka + 1
if ( ka .gt. kamax ) return
j = A_icol(ka)
enddo
end ! subroutine insert_j1j2
subroutine copy_fullrow2sprow(i, kc, C_it, C_mnel, C_icol, C_R,
$ C_I, B_m, B_n, B_it, B_R, B_I,
$ B_is_scalar, nelmax, ierr)
implicit none
integer i, kc, C_it, C_mnel, C_icol(*), B_m, B_n, B_it, nelmax,
$ ierr
logical B_is_scalar
double precision C_R(*), C_I(*), B_R(B_m,*), B_I(B_m,*)
integer j
double precision Bij_R, Bij_I
if (B_is_scalar) then
Bij_R = B_R(1,1)
if (B_it .eq. 1) Bij_I = B_I(1,1)
endif
do j = 1, B_n
if (kc .gt. nelmax) then ! test if enough memory
ierr = -1
return
endif
if ( .not. B_is_scalar ) then
Bij_R = B_R(i,j)
if (B_it .eq. 1) Bij_I = B_I(i,j)
endif
if (C_it .eq. 0) then ! real case (ie A and B are real)
if ( Bij_R .ne. 0.d0 ) then
C_icol(kc) = j
C_R(kc) = Bij_R
C_mnel = C_mnel + 1
kc = kc + 1
endif
else ! C_it = 1 this is the complex case (but B may be real or complex)
if (B_it .eq. 0) then ! B is real
if ( Bij_R .ne. 0.d0 ) then
C_icol(kc) = j
C_R(kc) = Bij_R
C_I(kc) = 0.d0
C_mnel = C_mnel + 1
kc = kc + 1
endif
else ! B is complex
if ( Bij_R.ne.0.d0 .or. Bij_I.ne.0.d0 ) then
C_icol(kc) = j
C_R(kc) = Bij_R
C_I(kc) = Bij_I
C_mnel = C_mnel + 1
kc = kc + 1
endif
endif
endif
enddo
end ! subroutine copy_fullrow2sprow
subroutine isorti(ix, p, n)
implicit none
integer n, ix(n), p(n)
integer i, j, kmax, temp
call set_perm_id(p, n)
kmax = 1
do i = 2,n
if (ix(i) .lt. ix(kmax)) kmax = i
enddo
p(1) = kmax
p(kmax) = 1
do i = 3, n
j = i
do while ( ix(p(j-1)) .gt. ix(p(j)) )
temp = p(j)
p(j) = p(j-1)
p(j-1) = temp
j = j-1
enddo
enddo
end ! subroutine isorti
integer function dicho_search(jj, val, n)
*
* PURPOSE
* val(1..n) being a increasing array, this
* routines by the mean of a dichotomic search computes
* the smallest indice of jj in val, ie the smallest
* integer k such that val(k) = jj or return 0 if jj
* is not in val.
*
* EXAMPLE
* if val = [1 4 5 5 8 8 12] we must
* get k = 3 if jj = 5
* k = 5 if jj = 8
* k = 0 if jj = 3
* etc...
*
* code brings by Bruno to speed up sparse extraction
implicit none
integer jj, n, val(n)
integer k, k1, k2
if ( n .lt. 1 ) then ! void search array
dicho_search = 0
return
endif
if ( val(1) .le. jj .and. jj .le. val(n) ) then
* find k such that jj = val(k) by a dicho search
k1 = 1
k2 = n
do while ( k2 - k1 .gt. 1 )
k = (k1 + k2)/2
if ( jj .le. val(k) ) then
k2 = k
else
k1 = k
endif
enddo
* here we know that val(k1) <= jj <= val(k2) with k2 = k1 + 1
if (jj .eq. val(k1)) then
dicho_search = k1
else if (jj .eq. val(k2)) then
dicho_search = k2
else
dicho_search = 0
endif
else
dicho_search = 0
endif
end
integer function dicho_search_bis(jj, val, p, n)
*
* PURPOSE
* same operation than the previus function but here
* the array val is in increasing order through the
* the permutation p, ie we have :
* val(p(1)) <= val(p(2)) <= ... <= val(p(n))
*
* code brings by Bruno to speed up sparse extraction
implicit none
integer jj, n, val(n), p(n)
integer k, k1, k2
if ( n .lt. 1 ) then ! void search array
dicho_search_bis = 0
return
endif
if ( val(p(1)) .le. jj .and. jj .le. val(p(n)) ) then
* find the smallest k such that jj = val(p(k)) by a dicho search
k1 = 1
k2 = n
do while ( k2 - k1 .gt. 1 )
k = (k1 + k2)/2
if ( jj .le. val(p(k)) ) then
k2 = k
else
k1 = k
endif
enddo
* here we know that val(p(k1)) <= jj <= val(p(k2)) with k2 = k1 + 1
if (jj .eq. val(p(k1))) then
dicho_search_bis = k1
else if (jj .eq. val(p(k2))) then
dicho_search_bis = k2
else
dicho_search_bis = 0
endif
else
dicho_search_bis = 0
endif
end
logical function is_in_order(val, n)
*
* PURPOSE
* test if the array val(1..n) is in increasing order
*
* code brings by Bruno to speed up sparse extraction
*
implicit none
integer n, val(n), i
is_in_order = .true.
do i = 2, n
if ( val(i) .lt. val(i-1) ) then
is_in_order = .false.
return
endif
enddo
end
subroutine insert_in_order(icol, kleft, kright, ind, it, B_R, B_I,
$ val_re, val_im)
*
* expliquer ....
*
implicit none
integer icol(*), kleft, kright, ind, it
double precision B_R(*), B_I(*), val_re, val_im
integer k
k = kright
if (k .gt. kleft) then ! a caution due to the fortran evaluation of .and.
do while (k .gt. kleft .and. icol(k-1) .gt. ind)
icol(k) = icol(k-1)
if (it .ge. 0) B_R(k) = B_R(k-1)
if (it .eq. 1) B_I(k) = B_I(k-1)
k = k-1
enddo
endif
icol(k) = ind
if (it .ge. 0) B_R(k) = val_re
if (it .eq. 1) B_I(k) = val_im
end
SUBROUTINE QSORTI (X, IND, N)
INTEGER N, X(N), IND(N)
C
C***********************************************************
C
C ROBERT RENKA
C OAK RIDGE NATL. LAB.
C
C THIS SUBROUTINE USES AN ORDER N*LOG(N) QUICK SORT TO
C SORT AN INTEGER ARRAY X INTO INCREASING ORDER. THE ALGOR-
C ITHM IS AS FOLLOWS. IND IS INITIALIZED TO THE ORDERED
C SEQUENCE OF INDICES 1,...,N, AND ALL INTERCHANGES ARE
C APPLIED TO IND. X IS DIVIDED INTO TWO PORTIONS BY PICKING
C A CENTRAL ELEMENT T. THE FIRST AND LAST ELEMENTS ARE COM-
C PARED WITH T, AND INTERCHANGES ARE APPLIED AS NECESSARY SO
C THAT THE THREE VALUES ARE IN ASCENDING ORDER. INTER-
C CHANGES ARE THEN APPLIED SO THAT ALL ELEMENTS GREATER THAN
C T ARE IN THE UPPER PORTION OF THE ARRAY AND ALL ELEMENTS
C LESS THAN T ARE IN THE LOWER PORTION. THE UPPER AND LOWER
C INDICES OF ONE OF THE PORTIONS ARE SAVED IN LOCAL ARRAYS,
C AND THE PROCESS IS REPEATED ITERATIVELY ON THE OTHER
C PORTION. WHEN A PORTION IS COMPLETELY SORTED, THE PROCESS
C BEGINS AGAIN BY RETRIEVING THE INDICES BOUNDING ANOTHER
C UNSORTED PORTION.
C
C INPUT PARAMETERS - N - LENGTH OF THE ARRAY X.
C
C X - VECTOR OF LENGTH N TO BE SORTED.
C
C IND - VECTOR OF LENGTH .GE. N.
C
C N AND X ARE NOT ALTERED BY THIS ROUTINE.
C
C OUTPUT PARAMETER - IND - SEQUENCE OF INDICES 1,...,N
C PERMUTED IN THE SAME FASHION AS X
C WOULD BE. THUS, THE ORDERING ON
C X IS DEFINED BY Y(I) = X(IND(I)).
C
C INTRINSIC FUNCTIONS CALLED BY QSORTI - IFIX, FLOAT
C
C***********************************************************
C
C NOTE -- IU AND IL MUST BE DIMENSIONED .GE. LOG(N) WHERE
C LOG HAS BASE 2.
C
C***********************************************************
C
INTEGER IU(21), IL(21)
INTEGER M, I, J, K, L, IJ, IT, ITT, INDX, T
REAL R
C
C LOCAL PARAMETERS -
C
C IU,IL = TEMPORARY STORAGE FOR THE UPPER AND LOWER
C INDICES OF PORTIONS OF THE ARRAY X
C M = INDEX FOR IU AND IL
C I,J = LOWER AND UPPER INDICES OF A PORTION OF X
C K,L = INDICES IN THE RANGE I,...,J
C IJ = RANDOMLY CHOSEN INDEX BETWEEN I AND J
C IT,ITT = TEMPORARY STORAGE FOR INTERCHANGES IN IND
C INDX = TEMPORARY INDEX FOR X
C R = PSEUDO RANDOM NUMBER FOR GENERATING IJ
C T = CENTRAL ELEMENT OF X
C
IF (N .LE. 0) RETURN
C
C INITIALIZE IND, M, I, J, AND R
C
DO 1 I = 1,N
1 IND(I) = I
M = 1
I = 1
J = N
R = .375
C
C TOP OF LOOP
C
2 IF (I .GE. J) GO TO 10
IF (R .GT. .5898437) GO TO 3
R = R + .0390625
GO TO 4
3 R = R - .21875
C
C INITIALIZE K
C
4 K = I
C
C SELECT A CENTRAL ELEMENT OF X AND SAVE IT IN T
C
IJ = I + IFIX(R*FLOAT(J-I))
IT = IND(IJ)
T = X(IT)
C
C IF THE FIRST ELEMENT OF THE ARRAY IS GREATER THAN T,
C INTERCHANGE IT WITH T
C
INDX = IND(I)
IF (X(INDX) .LE. T) GO TO 5
IND(IJ) = INDX
IND(I) = IT
IT = INDX
T = X(IT)
C
C INITIALIZE L
C
5 L = J
C
C IF THE LAST ELEMENT OF THE ARRAY IS LESS THAN T,
C INTERCHANGE IT WITH T
C
INDX = IND(J)
IF (X(INDX) .GE. T) GO TO 7
IND(IJ) = INDX
IND(J) = IT
IT = INDX
T = X(IT)
C
C IF THE FIRST ELEMENT OF THE ARRAY IS GREATER THAN T,
C INTERCHANGE IT WITH T
C
INDX = IND(I)
IF (X(INDX) .LE. T) GO TO 7
IND(IJ) = INDX
IND(I) = IT
IT = INDX
T = X(IT)
GO TO 7
C
C INTERCHANGE ELEMENTS K AND L
C
6 ITT = IND(L)
IND(L) = IND(K)
IND(K) = ITT
C
C FIND AN ELEMENT IN THE UPPER PART OF THE ARRAY WHICH IS
C NOT LARGER THAN T
C
7 L = L - 1
INDX = IND(L)
IF (X(INDX) .GT. T) GO TO 7
C
C FIND AN ELEMENT IN THE LOWER PART OF THE ARRAY WHCIH IS
C NOT SMALLER THAN T
C
8 K = K + 1
INDX = IND(K)
IF (X(INDX) .LT. T) GO TO 8
C
C IF K .LE. L, INTERCHANGE ELEMENTS K AND L
C
IF (K .LE. L) GO TO 6
C
C SAVE THE UPPER AND LOWER SUBSCRIPTS OF THE PORTION OF THE
C ARRAY YET TO BE SORTED
C
IF (L-I .LE. J-K) GO TO 9
IL(M) = I
IU(M) = L
I = K
M = M + 1
GO TO 11
C
9 IL(M) = K
IU(M) = J
J = L
M = M + 1
GO TO 11
C
C BEGIN AGAIN ON ANOTHER UNSORTED PORTION OF THE ARRAY
C
10 M = M - 1
IF (M .EQ. 0) RETURN
I = IL(M)
J = IU(M)
C
11 IF (J-I .GE. 11) GO TO 4
IF (I .EQ. 1) GO TO 2
I = I - 1
C
C SORT ELEMENTS I+1,...,J. NOTE THAT 1 .LE. I .LT. J AND
C J-I .LT. 11.
C
12 I = I + 1
IF (I .EQ. J) GO TO 10
INDX = IND(I+1)
T = X(INDX)
IT = INDX
INDX = IND(I)
IF (X(INDX) .LE. T) GO TO 12
K = I
C
13 IND(K+1) = IND(K)
K = K - 1
INDX = IND(K)
IF (T .LT. X(INDX)) GO TO 13
IND(K+1) = IT
GO TO 12
END
|