1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911
|
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: January 12, 1995
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C************** SFINIT ..... SET UP FOR SYMB. FACT. ************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE COMPUTES THE STORAGE REQUIREMENTS AND SETS UP
C PRELIMINARY DATA STRUCTURES FOR THE SYMBOLIC FACTORIZATION.
C
C NOTE:
C THIS VERSION PRODUCES THE MAXIMAL SUPERNODE PARTITION (I.E.,
C THE ONE WITH THE FEWEST POSSIBLE SUPERNODES).
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C NNZA - LENGTH OF ADJACENCY STRUCTURE.
C XADJ(*) - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS
C TO THE ADJACENCY STRUCTURE.
C ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1, CONTAINING
C THE ADJACENCY STRUCTURE.
C PERM(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C POSTORDERING.
C INVP(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C INVERSE OF THE POSTORDERING.
C IWSIZ - SIZE OF INTEGER WORKING STORAGE.
C
C OUTPUT PARAMETERS:
C COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER
C OF NONZEROS IN EACH COLUMN OF THE FACTOR,
C INCLUDING THE DIAGONAL ENTRY.
C NNZL - NUMBER OF NONZEROS IN THE FACTOR, INCLUDING
C THE DIAGONAL ENTRIES.
C NSUB - NUMBER OF SUBSCRIPTS.
C NSUPER - NUMBER OF SUPERNODES (<= NEQNS).
C SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING
C SUPERNODE MEMBERSHIP.
C XSUPER(*) - ARRAY OF LENGTH NEQNS+1, CONTAINING THE
C SUPERNODE PARTITIONING.
C IFLAG(*) - ERROR FLAG.
C 0: SUCCESSFUL SF INITIALIZATION.
C -1: INSUFFICENT WORKING STORAGE
C [IWORK(*)].
C
C WORK PARAMETERS:
C IWORK(*) - INTEGER WORK ARRAY OF LENGTH 7*NEQNS+3.
C
C FIRST CREATED ON NOVEMEBER 14, 1994.
C LAST UPDATED ON January 12, 1995.
C
C***********************************************************************
C
SUBROUTINE SFINIT ( NEQNS , NNZA , XADJ , ADJNCY, PERM ,
& INVP , COLCNT, NNZL , NSUB , NSUPER,
& SNODE , XSUPER, IWSIZ , IWORK , IFLAG )
C
C -----------
C PARAMETERS.
C -----------
INTEGER IFLAG , IWSIZ , NNZA , NEQNS , NNZL ,
& NSUB , NSUPER
INTEGER ADJNCY(NNZA) , COLCNT(NEQNS) ,
& INVP(NEQNS) , IWORK(7*NEQNS+3),
& PERM(NEQNS) , SNODE(NEQNS) ,
& XADJ(NEQNS+1) , XSUPER(NEQNS+1)
C
C***********************************************************************
C
C --------------------------------------------------------
C RETURN IF THERE IS INSUFFICIENT INTEGER WORKING STORAGE.
C --------------------------------------------------------
IFLAG = 0
IF ( IWSIZ .LT. 7*NEQNS+3 ) THEN
IFLAG = -1
RETURN
ENDIF
C
C ------------------------------------------
C COMPUTE ELIMINATION TREE AND POSTORDERING.
C ------------------------------------------
CALL ETORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP ,
& IWORK(1) ,
& IWORK(NEQNS+1) ,
& IWORK(2*NEQNS+1) ,
& IWORK(3*NEQNS+1) )
C
C ---------------------------------------------
C COMPUTE ROW AND COLUMN FACTOR NONZERO COUNTS.
C ---------------------------------------------
CALL FCNTHN ( NEQNS , NNZA , XADJ , ADJNCY, PERM ,
& INVP , IWORK(1) , SNODE , COLCNT,
& NNZL ,
& IWORK(NEQNS+1) ,
& IWORK(2*NEQNS+1) ,
& XSUPER ,
& IWORK(3*NEQNS+1) ,
& IWORK(4*NEQNS+2) ,
& IWORK(5*NEQNS+3) ,
& IWORK(6*NEQNS+4) )
C
C ---------------------------------------------------------
C REARRANGE CHILDREN SO THAT THE LAST CHILD HAS THE MAXIMUM
C NUMBER OF NONZEROS IN ITS COLUMN OF L.
C ---------------------------------------------------------
CALL CHORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP ,
& COLCNT,
& IWORK(1) ,
& IWORK(NEQNS+1) ,
& IWORK(2*NEQNS+1) ,
& IWORK(3*NEQNS+1) )
C
C ----------------
C FIND SUPERNODES.
C ----------------
CALL FSUP1 ( NEQNS , IWORK(1) , COLCNT, NSUB ,
& NSUPER, SNODE )
CALL FSUP2 ( NEQNS , NSUPER, IWORK(1) , SNODE ,
& XSUPER )
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Joseph W.H. Liu
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C********** ETORDR ..... ELIMINATION TREE REORDERING ***********
C***********************************************************************
C***********************************************************************
C
C WRITTEN BY JOSEPH LIU (JUL 17, 1985)
C
C PURPOSE:
C TO DETERMINE AN EQUIVALENT REORDERING BASED ON THE STRUCTURE OF
C THE ELIMINATION TREE. A POSTORDERING OF THE GIVEN ELIMINATION
C TREE IS RETURNED.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE.
C
C UPDATED PARAMETERS:
C (PERM,INVP) - ON INPUT, THE GIVEN PERM AND INVERSE PERM
C VECTORS. ON OUTPUT, THE NEW PERM AND
C INVERSE PERM VECTORS OF THE EQUIVALENT
C ORDERING.
C
C OUTPUT PARAMETERS:
C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE
C ASSOCIATED WITH THE NEW ORDERING.
C
C WORKING PARAMETERS:
C FSON - THE FIRST SON VECTOR.
C BROTHR - THE BROTHER VECTOR.
C INVPOS - THE INVERSE PERM VECTOR FOR THE
C POSTORDERING.
C
C PROGRAM SUBROUTINES:
C BETREE, ETPOST, ETREE , INVINV.
C
C***********************************************************************
C
SUBROUTINE ETORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP ,
& PARENT, FSON , BROTHR, INVPOS )
C
C***********************************************************************
C
INTEGER ADJNCY(*) , BROTHR(*) ,
& FSON(*) , INVP(*) ,
& INVPOS(*) , PARENT(*) ,
& PERM(*)
C
INTEGER XADJ(*)
INTEGER NEQNS
C
C***********************************************************************
C
C -----------------------------
C COMPUTE THE ELIMINATION TREE.
C -----------------------------
CALL ETREE ( NEQNS, XADJ, ADJNCY, PERM, INVP, PARENT, INVPOS )
C
C --------------------------------------------------------
C COMPUTE A BINARY REPRESENTATION OF THE ELIMINATION TREE.
C --------------------------------------------------------
CALL BETREE ( NEQNS, PARENT, FSON, BROTHR )
C
C -------------------------------
C POSTORDER THE ELIMINATION TREE.
C -------------------------------
CALL ETPOST ( NEQNS, FSON, BROTHR, INVPOS, PARENT, PERM )
C
C --------------------------------------------------------
C COMPOSE THE ORIGINAL ORDERING WITH THE NEW POSTORDERING.
C --------------------------------------------------------
CALL INVINV ( NEQNS, INVP, INVPOS, PERM )
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Joseph W.H. Liu
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C**************** ETREE ..... ELIMINATION TREE *****************
C***********************************************************************
C***********************************************************************
C
C WRITTEN BY JOSEPH LIU (JUL 17, 1985)
C
C PURPOSE:
C TO DETERMINE THE ELIMINATION TREE FROM A GIVEN ORDERING AND
C THE ADJACENCY STRUCTURE. THE PARENT VECTOR IS RETURNED.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE.
C (PERM,INVP) - PERMUTATION AND INVERSE PERMUTATION VECTORS
C
C OUTPUT PARAMETERS:
C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE.
C
C WORKING PARAMETERS:
C ANCSTR - THE ANCESTOR VECTOR.
C
C***********************************************************************
C
SUBROUTINE ETREE ( NEQNS , XADJ , ADJNCY, PERM , INVP ,
& PARENT, ANCSTR )
C
C***********************************************************************
C
INTEGER ADJNCY(*) , ANCSTR(*) ,
& INVP(*) , PARENT(*) ,
& PERM(*)
C
INTEGER NEQNS
INTEGER XADJ(*)
C
C***********************************************************************
C
INTEGER I , J , JSTOP , JSTRT , NBR ,
& NEXT , NODE
C
C***********************************************************************
C
IF ( NEQNS .LE. 0 ) RETURN
C
DO 400 I = 1, NEQNS
PARENT(I) = 0
ANCSTR(I) = 0
NODE = PERM(I)
C
JSTRT = XADJ(NODE)
JSTOP = XADJ(NODE+1) - 1
IF ( JSTRT .LE. JSTOP ) THEN
DO 300 J = JSTRT, JSTOP
NBR = ADJNCY(J)
NBR = INVP(NBR)
IF ( NBR .LT. I ) THEN
C -------------------------------------------
C FOR EACH NBR, FIND THE ROOT OF ITS CURRENT
C ELIMINATION TREE. PERFORM PATH COMPRESSION
C AS THE SUBTREE IS TRAVERSED.
C -------------------------------------------
100 CONTINUE
IF ( ANCSTR(NBR) .EQ. I ) GO TO 300
IF ( ANCSTR(NBR) .GT. 0 ) THEN
NEXT = ANCSTR(NBR)
ANCSTR(NBR) = I
NBR = NEXT
GO TO 100
ENDIF
C --------------------------------------------
C NOW, NBR IS THE ROOT OF THE SUBTREE. MAKE I
C THE PARENT NODE OF THIS ROOT.
C --------------------------------------------
PARENT(NBR) = I
ANCSTR(NBR) = I
ENDIF
300 CONTINUE
ENDIF
400 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Joseph W.H. Liu
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C****** BETREE ..... BINARY TREE REPRESENTATION OF ETREE *******
C***********************************************************************
C***********************************************************************
C
C WRITTEN BY JOSEPH LIU (JUL 17, 1985)
C
C PURPOSE:
C TO DETERMINE THE BINARY TREE REPRESENTATION OF THE ELIMINATION
C TREE GIVEN BY THE PARENT VECTOR. THE RETURNED REPRESENTATION
C WILL BE GIVEN BY THE FIRST-SON AND BROTHER VECTORS. THE ROOT
C OF THE BINARY TREE IS ALWAYS NEQNS.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE.
C IT IS ASSUMED THAT PARENT(I) > I EXCEPT OF
C THE ROOTS.
C
C OUTPUT PARAMETERS:
C FSON - THE FIRST SON VECTOR.
C BROTHR - THE BROTHER VECTOR.
C
C***********************************************************************
C
SUBROUTINE BETREE ( NEQNS , PARENT, FSON , BROTHR )
C
C***********************************************************************
C
INTEGER BROTHR(*) , FSON(*) ,
& PARENT(*)
C
INTEGER NEQNS
C
C***********************************************************************
C
INTEGER LROOT , NODE , NDPAR
C
C***********************************************************************
C
IF ( NEQNS .LE. 0 ) RETURN
C
DO 100 NODE = 1, NEQNS
FSON(NODE) = 0
BROTHR(NODE) = 0
100 CONTINUE
LROOT = NEQNS
C ------------------------------------------------------------
C FOR EACH NODE := NEQNS-1 STEP -1 DOWNTO 1, DO THE FOLLOWING.
C ------------------------------------------------------------
IF ( NEQNS .LE. 1 ) RETURN
DO 300 NODE = NEQNS-1, 1, -1
NDPAR = PARENT(NODE)
IF ( NDPAR .LE. 0 .OR. NDPAR .EQ. NODE ) THEN
C -------------------------------------------------
C NODE HAS NO PARENT. GIVEN STRUCTURE IS A FOREST.
C SET NODE TO BE ONE OF THE ROOTS OF THE TREES.
C -------------------------------------------------
BROTHR(LROOT) = NODE
LROOT = NODE
ELSE
C -------------------------------------------
C OTHERWISE, BECOMES FIRST SON OF ITS PARENT.
C -------------------------------------------
BROTHR(NODE) = FSON(NDPAR)
FSON(NDPAR) = NODE
ENDIF
300 CONTINUE
BROTHR(LROOT) = 0
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Joseph W.H. Liu
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C*************** ETPOST ..... ETREE POSTORDERING ***************
C***********************************************************************
C***********************************************************************
C
C WRITTEN BY JOSEPH LIU (SEPT 17, 1986)
C
C PURPOSE:
C BASED ON THE BINARY REPRESENTATION (FIRST-SON,BROTHER) OF
C THE ELIMINATION TREE, A POSTORDERING IS DETERMINED. THE
C CORRESPONDING PARENT VECTOR IS ALSO MODIFIED TO REFLECT
C THE REORDERING.
C
C INPUT PARAMETERS:
C ROOT - ROOT OF THE ELIMINATION TREE (USUALLY IT
C IS NEQNS).
C FSON - THE FIRST SON VECTOR.
C BROTHR - THE BROTHR VECTOR.
C
C UPDATED PARAMETERS:
C PARENT - THE PARENT VECTOR.
C
C OUTPUT PARAMETERS:
C INVPOS - INVERSE PERMUTATION FOR THE POSTORDERING.
C
C WORKING PARAMETERS:
C STACK - THE STACK FOR POSTORDER TRAVERSAL OF THE
C TREE.
C
C***********************************************************************
C
SUBROUTINE ETPOST ( ROOT , FSON , BROTHR, INVPOS, PARENT,
& STACK )
C
C***********************************************************************
C
INTEGER BROTHR(*) , FSON(*) ,
& INVPOS(*) , PARENT(*) ,
& STACK(*)
C
INTEGER ROOT
C
C***********************************************************************
C
INTEGER ITOP , NDPAR , NODE , NUM , NUNODE
C
C***********************************************************************
C
NUM = 0
ITOP = 0
NODE = ROOT
C -------------------------------------------------------------
C TRAVERSE ALONG THE FIRST SONS POINTER AND PUSH THE TREE NODES
C ALONG THE TRAVERSAL INTO THE STACK.
C -------------------------------------------------------------
100 CONTINUE
ITOP = ITOP + 1
STACK(ITOP) = NODE
NODE = FSON(NODE)
IF ( NODE .GT. 0 ) GO TO 100
C ----------------------------------------------------------
C IF POSSIBLE, POP A TREE NODE FROM THE STACK AND NUMBER IT.
C ----------------------------------------------------------
200 CONTINUE
IF ( ITOP .LE. 0 ) GO TO 300
NODE = STACK(ITOP)
ITOP = ITOP - 1
NUM = NUM + 1
INVPOS(NODE) = NUM
C ----------------------------------------------------
C THEN, TRAVERSE TO ITS YOUNGER BROTHER IF IT HAS ONE.
C ----------------------------------------------------
NODE = BROTHR(NODE)
IF ( NODE .LE. 0 ) GO TO 200
GO TO 100
C
300 CONTINUE
C ------------------------------------------------------------
C DETERMINE THE NEW PARENT VECTOR OF THE POSTORDERING. BROTHR
C IS USED TEMPORARILY FOR THE NEW PARENT VECTOR.
C ------------------------------------------------------------
DO 400 NODE = 1, NUM
NUNODE = INVPOS(NODE)
NDPAR = PARENT(NODE)
IF ( NDPAR .GT. 0 ) NDPAR = INVPOS(NDPAR)
BROTHR(NUNODE) = NDPAR
400 CONTINUE
C
DO 500 NUNODE = 1, NUM
PARENT(NUNODE) = BROTHR(NUNODE)
500 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Joseph W.H. Liu
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C*********** INVINV ..... CONCATENATION OF TWO INVP ************
C***********************************************************************
C***********************************************************************
C
C WRITTEN BY JOSEPH LIU (JUL 17, 1985)
C
C PURPOSE:
C TO PERFORM THE MAPPING OF
C ORIGINAL-INVP --> INTERMEDIATE-INVP --> NEW INVP
C AND THE RESULTING ORDERING REPLACES INVP. THE NEW PERMUTATION
C VECTOR PERM IS ALSO COMPUTED.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C INVP2 - THE SECOND INVERSE PERMUTATION VECTOR.
C
C UPDATED PARAMETERS:
C INVP - THE FIRST INVERSE PERMUTATION VECTOR. ON
C OUTPUT, IT CONTAINS THE NEW INVERSE
C PERMUTATION.
C
C OUTPUT PARAMETER:
C PERM - NEW PERMUTATION VECTOR (CAN BE THE SAME AS
C INVP2).
C
C***********************************************************************
C
SUBROUTINE INVINV ( NEQNS , INVP , INVP2 , PERM )
C
C***********************************************************************
C
INTEGER INVP(*) , INVP2(*) ,
& PERM(*)
C
INTEGER NEQNS
C
C***********************************************************************
C
INTEGER I , INTERM, NODE
C
C***********************************************************************
C
DO 100 I = 1, NEQNS
INTERM = INVP(I)
INVP(I) = INVP2(INTERM)
100 CONTINUE
C
DO 200 I = 1, NEQNS
NODE = INVP(I)
PERM(NODE) = I
200 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C********** CHORDR ..... CHILD REORDERING ***********
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C REARRANGE THE CHILDREN OF EACH VERTEX SO THAT THE LAST ONE
C MAXIMIZES (AMONG THE CHILDREN) THE NUMBER OF NONZEROS IN THE
C CORRESPONDING COLUMN OF L. ALSO DETERMINE AN NEW POSTORDERING
C BASED ON THE STRUCTURE OF THE MODIFIED ELIMINATION TREE.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C (XADJ,ADJNCY) - THE ADJACENCY STRUCTURE.
C
C UPDATED PARAMETERS:
C (PERM,INVP) - ON INPUT, THE GIVEN PERM AND INVERSE PERM
C VECTORS. ON OUTPUT, THE NEW PERM AND
C INVERSE PERM VECTORS OF THE NEW
C POSTORDERING.
C COLCNT - COLUMN COUNTS IN L UNDER INITIAL ORDERING;
C MODIFIED TO REFLECT THE NEW ORDERING.
C
C OUTPUT PARAMETERS:
C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE
C ASSOCIATED WITH THE NEW ORDERING.
C
C WORKING PARAMETERS:
C FSON - THE FIRST SON VECTOR.
C BROTHR - THE BROTHER VECTOR.
C INVPOS - THE INVERSE PERM VECTOR FOR THE
C POSTORDERING.
C
C PROGRAM SUBROUTINES:
C BTREE2, EPOST2, INVINV.
C
C***********************************************************************
C
SUBROUTINE CHORDR ( NEQNS , XADJ , ADJNCY, PERM , INVP ,
& COLCNT, PARENT, FSON , BROTHR, INVPOS )
C
C***********************************************************************
C
INTEGER ADJNCY(*) , BROTHR(*) ,
& COLCNT(*) , FSON(*) ,
& INVP(*) , INVPOS(*) ,
& PARENT(*) , PERM(*)
C
INTEGER XADJ(*)
INTEGER NEQNS
C
C***********************************************************************
C
C ----------------------------------------------------------
C COMPUTE A BINARY REPRESENTATION OF THE ELIMINATION TREE,
C SO THAT EACH "LAST CHILD" MAXIMIZES AMONG ITS SIBLINGS THE
C NUMBER OF NONZEROS IN THE CORRESPONDING COLUMNS OF L.
C ----------------------------------------------------------
CALL BTREE2 ( NEQNS , PARENT, COLCNT, FSON , BROTHR,
& INVPOS )
C
C ----------------------------------------------------
C POSTORDER THE ELIMINATION TREE (USING THE NEW BINARY
C REPRESENTATION.
C ----------------------------------------------------
CALL EPOST2 ( NEQNS , FSON , BROTHR, INVPOS, PARENT,
& COLCNT, PERM )
C
C --------------------------------------------------------
C COMPOSE THE ORIGINAL ORDERING WITH THE NEW POSTORDERING.
C --------------------------------------------------------
CALL INVINV ( NEQNS , INVP , INVPOS, PERM )
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: January 12, 1995
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C****** BTREE2 ..... BINARY TREE REPRESENTATION OF ETREE *******
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C TO DETERMINE A BINARY TREE REPRESENTATION OF THE ELIMINATION
C TREE, FOR WHICH EVERY "LAST CHILD" HAS THE MAXIMUM POSSIBLE
C COLUMN NONZERO COUNT IN THE FACTOR. THE RETURNED REPRESENTATION
C WILL BE GIVEN BY THE FIRST-SON AND BROTHER VECTORS. THE ROOT OF
C THE BINARY TREE IS ALWAYS NEQNS.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C PARENT - THE PARENT VECTOR OF THE ELIMINATION TREE.
C IT IS ASSUMED THAT PARENT(I) > I EXCEPT OF
C THE ROOTS.
C COLCNT - COLUMN NONZERO COUNTS OF THE FACTOR.
C
C OUTPUT PARAMETERS:
C FSON - THE FIRST SON VECTOR.
C BROTHR - THE BROTHER VECTOR.
C
C WORKING PARAMETERS:
C LSON - LAST SON VECTOR.
C
C***********************************************************************
C
SUBROUTINE BTREE2 ( NEQNS , PARENT, COLCNT, FSON , BROTHR,
& LSON )
C
C***********************************************************************
C
INTEGER BROTHR(*) , COLCNT(*) ,
& FSON(*) , LSON(*) ,
& PARENT(*)
C
INTEGER NEQNS
C
C***********************************************************************
C
INTEGER LROOT , NODE , NDLSON, NDPAR
C
C***********************************************************************
C
IF ( NEQNS .LE. 0 ) RETURN
C
DO 100 NODE = 1, NEQNS
FSON(NODE) = 0
BROTHR(NODE) = 0
LSON(NODE) = 0
100 CONTINUE
LROOT = NEQNS
C ------------------------------------------------------------
C FOR EACH NODE := NEQNS-1 STEP -1 DOWNTO 1, DO THE FOLLOWING.
C ------------------------------------------------------------
IF ( NEQNS .LE. 1 ) RETURN
DO 300 NODE = NEQNS-1, 1, -1
NDPAR = PARENT(NODE)
IF ( NDPAR .LE. 0 .OR. NDPAR .EQ. NODE ) THEN
C -------------------------------------------------
C NODE HAS NO PARENT. GIVEN STRUCTURE IS A FOREST.
C SET NODE TO BE ONE OF THE ROOTS OF THE TREES.
C -------------------------------------------------
BROTHR(LROOT) = NODE
LROOT = NODE
ELSE
C -------------------------------------------
C OTHERWISE, BECOMES FIRST SON OF ITS PARENT.
C -------------------------------------------
NDLSON = LSON(NDPAR)
IF ( NDLSON .NE. 0 ) THEN
IF ( COLCNT(NODE) .GE. COLCNT(NDLSON) ) THEN
BROTHR(NODE) = FSON(NDPAR)
FSON(NDPAR) = NODE
ELSE
BROTHR(NDLSON) = NODE
LSON(NDPAR) = NODE
ENDIF
ELSE
FSON(NDPAR) = NODE
LSON(NDPAR) = NODE
ENDIF
ENDIF
300 CONTINUE
BROTHR(LROOT) = 0
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C*************** EPOST2 ..... ETREE POSTORDERING #2 ***************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C BASED ON THE BINARY REPRESENTATION (FIRST-SON,BROTHER) OF THE
C ELIMINATION TREE, A POSTORDERING IS DETERMINED. THE
C CORRESPONDING PARENT AND COLCNT VECTORS ARE ALSO MODIFIED TO
C REFLECT THE REORDERING.
C
C INPUT PARAMETERS:
C ROOT - ROOT OF THE ELIMINATION TREE (USUALLY IT
C IS NEQNS).
C FSON - THE FIRST SON VECTOR.
C BROTHR - THE BROTHR VECTOR.
C
C UPDATED PARAMETERS:
C PARENT - THE PARENT VECTOR.
C COLCNT - COLUMN NONZERO COUNTS OF THE FACTOR.
C
C OUTPUT PARAMETERS:
C INVPOS - INVERSE PERMUTATION FOR THE POSTORDERING.
C
C WORKING PARAMETERS:
C STACK - THE STACK FOR POSTORDER TRAVERSAL OF THE
C TREE.
C
C***********************************************************************
C
SUBROUTINE EPOST2 ( ROOT , FSON , BROTHR, INVPOS, PARENT,
& COLCNT, STACK )
C
C***********************************************************************
C
INTEGER BROTHR(*) , COLCNT(*) ,
& FSON(*) , INVPOS(*) ,
& PARENT(*) , STACK(*)
C
INTEGER ROOT
C
C***********************************************************************
C
INTEGER ITOP , NDPAR , NODE , NUM , NUNODE
C
C***********************************************************************
C
NUM = 0
ITOP = 0
NODE = ROOT
C -------------------------------------------------------------
C TRAVERSE ALONG THE FIRST SONS POINTER AND PUSH THE TREE NODES
C ALONG THE TRAVERSAL INTO THE STACK.
C -------------------------------------------------------------
100 CONTINUE
ITOP = ITOP + 1
STACK(ITOP) = NODE
NODE = FSON(NODE)
IF ( NODE .GT. 0 ) GO TO 100
C ----------------------------------------------------------
C IF POSSIBLE, POP A TREE NODE FROM THE STACK AND NUMBER IT.
C ----------------------------------------------------------
200 CONTINUE
IF ( ITOP .LE. 0 ) GO TO 300
NODE = STACK(ITOP)
ITOP = ITOP - 1
NUM = NUM + 1
INVPOS(NODE) = NUM
C ----------------------------------------------------
C THEN, TRAVERSE TO ITS YOUNGER BROTHER IF IT HAS ONE.
C ----------------------------------------------------
NODE = BROTHR(NODE)
IF ( NODE .LE. 0 ) GO TO 200
GO TO 100
C
300 CONTINUE
C ------------------------------------------------------------
C DETERMINE THE NEW PARENT VECTOR OF THE POSTORDERING. BROTHR
C IS USED TEMPORARILY FOR THE NEW PARENT VECTOR.
C ------------------------------------------------------------
DO 400 NODE = 1, NUM
NUNODE = INVPOS(NODE)
NDPAR = PARENT(NODE)
IF ( NDPAR .GT. 0 ) NDPAR = INVPOS(NDPAR)
BROTHR(NUNODE) = NDPAR
400 CONTINUE
C
DO 500 NUNODE = 1, NUM
PARENT(NUNODE) = BROTHR(NUNODE)
500 CONTINUE
C
C ----------------------------------------------
C PERMUTE COLCNT(*) TO REFLECT THE NEW ORDERING.
C ----------------------------------------------
DO 600 NODE = 1, NUM
NUNODE = INVPOS(NODE)
STACK(NUNODE) = COLCNT(NODE)
600 CONTINUE
C
DO 700 NODE = 1, NUM
COLCNT(NODE) = STACK(NODE)
700 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: January 12, 1995
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C************** FCNTHN ..... FIND NONZERO COUNTS ***************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE DETERMINES THE ROW COUNTS AND COLUMN COUNTS IN
C THE CHOLESKY FACTOR. IT USES A DISJOINT SET UNION ALGORITHM.
C
C TECHNIQUES:
C 1) SUPERNODE DETECTION.
C 2) PATH HALVING.
C 3) NO UNION BY RANK.
C
C NOTES:
C 1) ASSUMES A POSTORDERING OF THE ELIMINATION TREE.
C
C INPUT PARAMETERS:
C (I) NEQNS - NUMBER OF EQUATIONS.
C (I) ADJLEN - LENGTH OF ADJACENCY STRUCTURE.
C (I) XADJ(*) - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS
C TO THE ADJACENCY STRUCTURE.
C (I) ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1, CONTAINING
C THE ADJACENCY STRUCTURE.
C (I) PERM(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C POSTORDERING.
C (I) INVP(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C INVERSE OF THE POSTORDERING.
C (I) ETPAR(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C ELIMINATION TREE OF THE POSTORDERED MATRIX.
C
C OUTPUT PARAMETERS:
C (I) ROWCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER
C OF NONZEROS IN EACH ROW OF THE FACTOR,
C INCLUDING THE DIAGONAL ENTRY.
C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER
C OF NONZEROS IN EACH COLUMN OF THE FACTOR,
C INCLUDING THE DIAGONAL ENTRY.
C (I) NLNZ - NUMBER OF NONZEROS IN THE FACTOR, INCLUDING
C THE DIAGONAL ENTRIES.
C
C WORK PARAMETERS:
C (I) SET(*) - ARRAY OF LENGTH NEQNS USED TO MAINTAIN THE
C DISJOINT SETS (I.E., SUBTREES).
C (I) PRVLF(*) - ARRAY OF LENGTH NEQNS USED TO RECORD THE
C PREVIOUS LEAF OF EACH ROW SUBTREE.
C (I) LEVEL(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING THE LEVEL
C (DISTANCE FROM THE ROOT).
C (I) WEIGHT(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING WEIGHTS
C USED TO COMPUTE COLUMN COUNTS.
C (I) FDESC(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING THE
C FIRST (I.E., LOWEST-NUMBERED) DESCENDANT.
C (I) NCHILD(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING THE
C NUMBER OF CHILDREN.
C (I) PRVNBR(*) - ARRAY OF LENGTH NEQNS USED TO RECORD THE
C PREVIOUS ``LOWER NEIGHBOR'' OF EACH NODE.
C
C FIRST CREATED ON APRIL 12, 1990.
C LAST UPDATED ON JANUARY 12, 1995.
C
C***********************************************************************
C
SUBROUTINE FCNTHN ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM ,
& INVP , ETPAR , ROWCNT, COLCNT, NLNZ ,
& SET , PRVLF , LEVEL , WEIGHT, FDESC ,
& NCHILD, PRVNBR )
C
C -----------
C PARAMETERS.
C -----------
INTEGER ADJLEN, NEQNS , NLNZ
INTEGER ADJNCY(ADJLEN) , COLCNT(NEQNS) ,
& ETPAR(NEQNS) , FDESC(0:NEQNS),
& INVP(NEQNS) , LEVEL(0:NEQNS),
& NCHILD(0:NEQNS) , PERM(NEQNS) ,
& PRVLF(NEQNS) , PRVNBR(NEQNS) ,
& ROWCNT(NEQNS) , SET(NEQNS) ,
& WEIGHT(0:NEQNS)
INTEGER XADJ(*)
C
C ----------------
C LOCAL VARIABLES.
C ----------------
INTEGER HINBR , IFDESC, J , JSTOP , JSTRT ,
& K , LAST1 , LAST2 , LCA , LFLAG ,
& LOWNBR, OLDNBR, PARENT, PLEAF , TEMP ,
& XSUP
C
C***********************************************************************
C
C --------------------------------------------------
C COMPUTE LEVEL(*), FDESC(*), NCHILD(*).
C INITIALIZE ROWCNT(*), COLCNT(*),
C SET(*), PRVLF(*), WEIGHT(*), PRVNBR(*).
C --------------------------------------------------
CSS Next line added, because XSUP may be indetermined below see
CSS other CSS comment
XSUP = 0
LEVEL(0) = 0
DO 100 K = NEQNS, 1, -1
ROWCNT(K) = 1
COLCNT(K) = 0
SET(K) = K
PRVLF(K) = 0
LEVEL(K) = LEVEL(ETPAR(K)) + 1
WEIGHT(K) = 1
FDESC(K) = K
NCHILD(K) = 0
PRVNBR(K) = 0
100 CONTINUE
NCHILD(0) = 0
FDESC(0) = 0
DO 200 K = 1, NEQNS
PARENT = ETPAR(K)
WEIGHT(PARENT) = 0
NCHILD(PARENT) = NCHILD(PARENT) + 1
IFDESC = FDESC(K)
IF ( IFDESC .LT. FDESC(PARENT) ) THEN
FDESC(PARENT) = IFDESC
ENDIF
200 CONTINUE
C ------------------------------------
C FOR EACH ``LOW NEIGHBOR'' LOWNBR ...
C ------------------------------------
DO 600 LOWNBR = 1, NEQNS
LFLAG = 0
IFDESC = FDESC(LOWNBR)
OLDNBR = PERM(LOWNBR)
JSTRT = XADJ(OLDNBR)
JSTOP = XADJ(OLDNBR+1) - 1
C -----------------------------------------------
C FOR EACH ``HIGH NEIGHBOR'', HINBR OF LOWNBR ...
C -----------------------------------------------
DO 500 J = JSTRT, JSTOP
HINBR = INVP(ADJNCY(J))
IF ( HINBR .GT. LOWNBR ) THEN
IF ( IFDESC .GT. PRVNBR(HINBR) ) THEN
C -------------------------
C INCREMENT WEIGHT(LOWNBR).
C -------------------------
WEIGHT(LOWNBR) = WEIGHT(LOWNBR) + 1
PLEAF = PRVLF(HINBR)
C -----------------------------------------
C IF HINBR HAS NO PREVIOUS ``LOW NEIGHBOR''
C THEN ...
C -----------------------------------------
IF ( PLEAF .EQ. 0 ) THEN
C -----------------------------------------
C ... ACCUMULATE LOWNBR-->HINBR PATH LENGTH
C IN ROWCNT(HINBR).
C -----------------------------------------
ROWCNT(HINBR) = ROWCNT(HINBR) +
& LEVEL(LOWNBR) - LEVEL(HINBR)
ELSE
C -----------------------------------------
C ... OTHERWISE, LCA <-- FIND(PLEAF), WHICH
C IS THE LEAST COMMON ANCESTOR OF PLEAF
C AND LOWNBR.
C (PATH HALVING.)
C -----------------------------------------
LAST1 = PLEAF
LAST2 = SET(LAST1)
LCA = SET(LAST2)
300 CONTINUE
IF ( LCA .NE. LAST2 ) THEN
SET(LAST1) = LCA
LAST1 = LCA
LAST2 = SET(LAST1)
LCA = SET(LAST2)
GO TO 300
ENDIF
C -------------------------------------
C ACCUMULATE PLEAF-->LCA PATH LENGTH IN
C ROWCNT(HINBR).
C DECREMENT WEIGHT(LCA).
C -------------------------------------
ROWCNT(HINBR) = ROWCNT(HINBR)
& + LEVEL(LOWNBR) - LEVEL(LCA)
WEIGHT(LCA) = WEIGHT(LCA) - 1
ENDIF
C ----------------------------------------------
C LOWNBR NOW BECOMES ``PREVIOUS LEAF'' OF HINBR.
C ----------------------------------------------
PRVLF(HINBR) = LOWNBR
LFLAG = 1
ENDIF
C --------------------------------------------------
C LOWNBR NOW BECOMES ``PREVIOUS NEIGHBOR'' OF HINBR.
C --------------------------------------------------
PRVNBR(HINBR) = LOWNBR
ENDIF
500 CONTINUE
C ----------------------------------------------------
C DECREMENT WEIGHT ( PARENT(LOWNBR) ).
C SET ( P(LOWNBR) ) <-- SET ( P(LOWNBR) ) + SET(XSUP).
C ----------------------------------------------------
PARENT = ETPAR(LOWNBR)
WEIGHT(PARENT) = WEIGHT(PARENT) - 1
IF ( LFLAG .EQ. 1 .OR.
& NCHILD(LOWNBR) .GE. 2 ) THEN
XSUP = LOWNBR
ENDIF
CSS original code was "SET(XSUP) = PARENT"
IF (XSUP.gt.0) SET(XSUP) = PARENT
600 CONTINUE
C ---------------------------------------------------------
C USE WEIGHTS TO COMPUTE COLUMN (AND TOTAL) NONZERO COUNTS.
C ---------------------------------------------------------
NLNZ = 0
DO 700 K = 1, NEQNS
TEMP = COLCNT(K) + WEIGHT(K)
COLCNT(K) = TEMP
NLNZ = NLNZ + TEMP
PARENT = ETPAR(K)
IF ( PARENT .NE. 0 ) THEN
COLCNT(PARENT) = COLCNT(PARENT) + TEMP
ENDIF
700 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C**************** FSUP1 ..... FIND SUPERNODES #1 *****************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE IS THE FIRST OF TWO ROUTINES FOR FINDING A
C MAXIMAL SUPERNODE PARTITION. IT RETURNS ONLY THE NUMBER OF
C SUPERNODES NSUPER AND THE SUPERNODE MEMBERSHIP VECTOR SNODE(*),
C WHICH IS OF LENGTH NEQNS. THE VECTORS OF LENGTH NSUPER ARE
C COMPUTED SUBSEQUENTLY BY THE COMPANION ROUTINE FSUP2.
C
C METHOD AND ASSUMPTIONS:
C THIS ROUTINE USES THE ELIMINATION TREE AND THE FACTOR COLUMN
C COUNTS TO COMPUTE THE SUPERNODE PARTITION; IT ALSO ASSUMES A
C POSTORDERING OF THE ELIMINATION TREE.
C
C INPUT PARAMETERS:
C (I) NEQNS - NUMBER OF EQUATIONS.
C (I) ETPAR(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C ELIMINATION TREE OF THE POSTORDERED MATRIX.
C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C FACTOR COLUMN COUNTS: I.E., THE NUMBER OF
C NONZERO ENTRIES IN EACH COLUMN OF L
C (INCLUDING THE DIAGONAL ENTRY).
C
C OUTPUT PARAMETERS:
C (I) NOFSUB - NUMBER OF SUBSCRIPTS.
C (I) NSUPER - NUMBER OF SUPERNODES (<= NEQNS).
C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING
C SUPERNODE MEMBERSHIP.
C
C FIRST CREATED ON JANUARY 18, 1992.
C LAST UPDATED ON NOVEMBER 11, 1994.
C
C***********************************************************************
C
SUBROUTINE FSUP1 ( NEQNS , ETPAR , COLCNT, NOFSUB, NSUPER,
& SNODE )
C
C***********************************************************************
C
C -----------
C PARAMETERS.
C -----------
INTEGER NEQNS , NOFSUB, NSUPER
INTEGER COLCNT(*) , ETPAR(*) ,
& SNODE(*)
C
C ----------------
C LOCAL VARIABLES.
C ----------------
INTEGER KCOL
C
C***********************************************************************
C
C --------------------------------------------
C COMPUTE THE FUNDAMENTAL SUPERNODE PARTITION.
C --------------------------------------------
NSUPER = 1
SNODE(1) = 1
NOFSUB = COLCNT(1)
DO 300 KCOL = 2, NEQNS
IF ( ETPAR(KCOL-1) .EQ. KCOL ) THEN
IF ( COLCNT(KCOL-1) .EQ. COLCNT(KCOL)+1 ) THEN
SNODE(KCOL) = NSUPER
GO TO 300
ENDIF
ENDIF
NSUPER = NSUPER + 1
SNODE(KCOL) = NSUPER
NOFSUB = NOFSUB + COLCNT(KCOL)
300 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C**************** FSUP2 ..... FIND SUPERNODES #2 *****************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE IS THE SECOND OF TWO ROUTINES FOR FINDING A
C MAXIMAL SUPERNODE PARTITION. IT'S SOLE PURPOSE IS TO
C CONSTRUCT THE NEEDED VECTOR OF LENGTH NSUPER: XSUPER(*). THE
C FIRST ROUTINE FSUP1 COMPUTES THE NUMBER OF SUPERNODES AND THE
C SUPERNODE MEMBERSHIP VECTOR SNODE(*), WHICH IS OF LENGTH NEQNS.
C
C
C ASSUMPTIONS:
C THIS ROUTINE ASSUMES A POSTORDERING OF THE ELIMINATION TREE. IT
C ALSO ASSUMES THAT THE OUTPUT FROM FSUP1 IS AVAILABLE.
C
C INPUT PARAMETERS:
C (I) NEQNS - NUMBER OF EQUATIONS.
C (I) NSUPER - NUMBER OF SUPERNODES (<= NEQNS).
C (I) ETPAR(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE
C ELIMINATION TREE OF THE POSTORDERED MATRIX.
C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING
C SUPERNODE MEMBERSHIP.
C
C OUTPUT PARAMETERS:
C (I) XSUPER(*) - ARRAY OF LENGTH NSUPER+1, CONTAINING THE
C SUPERNODE PARTITIONING.
C
C FIRST CREATED ON JANUARY 18, 1992.
C LAST UPDATED ON NOVEMEBER 22, 1994.
C
C***********************************************************************
C
SUBROUTINE FSUP2 ( NEQNS , NSUPER, ETPAR , SNODE , XSUPER )
C
C***********************************************************************
C
C -----------
C PARAMETERS.
C -----------
INTEGER NEQNS , NSUPER
INTEGER ETPAR(*) , SNODE(*) ,
& XSUPER(*)
C
C ----------------
C LOCAL VARIABLES.
C ----------------
INTEGER KCOL , KSUP , LSTSUP
C
C***********************************************************************
C
C -------------------------------------------------
C COMPUTE THE SUPERNODE PARTITION VECTOR XSUPER(*).
C -------------------------------------------------
LSTSUP = NSUPER + 1
DO 100 KCOL = NEQNS, 1, -1
KSUP = SNODE(KCOL)
IF ( KSUP .NE. LSTSUP ) THEN
XSUPER(LSTSUP) = KCOL + 1
ENDIF
LSTSUP = KSUP
100 CONTINUE
XSUPER(1) = 1
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: February 13, 1995
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C************* SYMFCT ..... SYMBOLIC FACTORIZATION **************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS ROUTINE CALLS SYMFC2 WHICH PERFORMS SUPERNODAL SYMBOLIC
C FACTORIZATION ON A REORDERED LINEAR SYSTEM.
C
C INPUT PARAMETERS:
C (I) NEQNS - NUMBER OF EQUATIONS
C (I) ADJLEN - LENGTH OF THE ADJACENCY LIST.
C (I) XADJ(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING POINTERS
C TO THE ADJACENCY STRUCTURE.
C (I) ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1 CONTAINING
C THE ADJACENCY STRUCTURE.
C (I) PERM(*) - ARRAY OF LENGTH NEQNS CONTAINING THE
C POSTORDERING.
C (I) INVP(*) - ARRAY OF LENGTH NEQNS CONTAINING THE
C INVERSE OF THE POSTORDERING.
C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER
C OF NONZEROS IN EACH COLUMN OF THE FACTOR,
C INCLUDING THE DIAGONAL ENTRY.
C (I) NSUPER - NUMBER OF SUPERNODES.
C (I) XSUPER(*) - ARRAY OF LENGTH NSUPER+1, CONTAINING THE
C FIRST COLUMN OF EACH SUPERNODE.
C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING
C SUPERNODE MEMBERSHIP.
C (I) NOFSUB - NUMBER OF SUBSCRIPTS TO BE STORED IN
C LINDX(*).
C (I) IWSIZ - SIZE OF INTEGER WORKING STORAGE.
C
C OUTPUT PARAMETERS:
C (I) XLINDX - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS
C INTO THE SUBSCRIPT VECTOR.
C (I) LINDX - ARRAY OF LENGTH MAXSUB, CONTAINING THE
C COMPRESSED SUBSCRIPTS.
C (I) XLNZ - COLUMN POINTERS FOR L.
C (I) FLAG - ERROR FLAG:
C 0 - NO ERROR.
C -1 - INSUFFICIENT INTEGER WORKING SPACE.
C -2 - INCONSISTANCY IN THE INPUT.
C
C WORKING PARAMETERS:
C (I) IWORK - WORKING ARRAY OF LENGTH NSUPER+2*NEQNS.
C
C***********************************************************************
C
SUBROUTINE SYMFCT ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM ,
& INVP , COLCNT, NSUPER, XSUPER, SNODE ,
& NOFSUB, XLINDX, LINDX , XLNZ , IWSIZ ,
& IWORK ,
& FLAG )
C
C***********************************************************************
C
C -----------
C PARAMETERS.
C -----------
INTEGER ADJLEN, FLAG , IWSIZ , NEQNS , NOFSUB,
& NSUPER
INTEGER ADJNCY(ADJLEN), COLCNT(NEQNS) ,
& INVP(NEQNS) ,
& IWORK(NSUPER+2*NEQNS+1),
& LINDX(NOFSUB) ,
& PERM(NEQNS) , SNODE(NEQNS) ,
& XSUPER(NSUPER+1)
INTEGER XADJ(NEQNS+1) , XLINDX(NSUPER+1),
& XLNZ(NEQNS+1)
C
C***********************************************************************
C
FLAG = 0
IF ( IWSIZ .LT. NSUPER+2*NEQNS+1 ) THEN
FLAG = -1
RETURN
ENDIF
CALL SYMFC2 ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM ,
& INVP , COLCNT, NSUPER, XSUPER, SNODE ,
& NOFSUB, XLINDX, LINDX , XLNZ ,
& IWORK(1) ,
& IWORK(NSUPER+1) ,
& IWORK(NSUPER+NEQNS+2) ,
& FLAG )
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: February 13, 1995
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C************* SYMFC2 ..... SYMBOLIC FACTORIZATION **************
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS ROUTINE PERFORMS SUPERNODAL SYMBOLIC FACTORIZATION ON A
C REORDERED LINEAR SYSTEM. IT ASSUMES ACCESS TO THE COLUMNS
C COUNTS, SUPERNODE PARTITION, AND SUPERNODAL ELIMINATION TREE
C ASSOCIATED WITH THE FACTOR MATRIX L.
C
C INPUT PARAMETERS:
C (I) NEQNS - NUMBER OF EQUATIONS
C (I) ADJLEN - LENGTH OF THE ADJACENCY LIST.
C (I) XADJ(*) - ARRAY OF LENGTH NEQNS+1 CONTAINING POINTERS
C TO THE ADJACENCY STRUCTURE.
C (I) ADJNCY(*) - ARRAY OF LENGTH XADJ(NEQNS+1)-1 CONTAINING
C THE ADJACENCY STRUCTURE.
C (I) PERM(*) - ARRAY OF LENGTH NEQNS CONTAINING THE
C POSTORDERING.
C (I) INVP(*) - ARRAY OF LENGTH NEQNS CONTAINING THE
C INVERSE OF THE POSTORDERING.
C (I) COLCNT(*) - ARRAY OF LENGTH NEQNS, CONTAINING THE NUMBER
C OF NONZEROS IN EACH COLUMN OF THE FACTOR,
C INCLUDING THE DIAGONAL ENTRY.
C (I) NSUPER - NUMBER OF SUPERNODES.
C (I) XSUPER(*) - ARRAY OF LENGTH NSUPER+1, CONTAINING THE
C FIRST COLUMN OF EACH SUPERNODE.
C (I) SNODE(*) - ARRAY OF LENGTH NEQNS FOR RECORDING
C SUPERNODE MEMBERSHIP.
C (I) NOFSUB - NUMBER OF SUBSCRIPTS TO BE STORED IN
C LINDX(*).
C
C OUTPUT PARAMETERS:
C (I) XLINDX - ARRAY OF LENGTH NEQNS+1, CONTAINING POINTERS
C INTO THE SUBSCRIPT VECTOR.
C (I) LINDX - ARRAY OF LENGTH MAXSUB, CONTAINING THE
C COMPRESSED SUBSCRIPTS.
C (I) XLNZ - COLUMN POINTERS FOR L.
C (I) FLAG - ERROR FLAG:
C 0 - NO ERROR.
C 1 - INCONSISTANCY IN THE INPUT.
C
C WORKING PARAMETERS:
C (I) MRGLNK - ARRAY OF LENGTH NSUPER, CONTAINING THE
C CHILDREN OF EACH SUPERNODE AS A LINKED LIST.
C (I) RCHLNK - ARRAY OF LENGTH NEQNS+1, CONTAINING THE
C CURRENT LINKED LIST OF MERGED INDICES (THE
C "REACH" SET).
C (I) MARKER - ARRAY OF LENGTH NEQNS USED TO MARK INDICES
C AS THEY ARE INTRODUCED INTO EACH SUPERNODE'S
C INDEX SET.
C
C***********************************************************************
C
SUBROUTINE SYMFC2 ( NEQNS , ADJLEN, XADJ , ADJNCY, PERM ,
& INVP , COLCNT, NSUPER, XSUPER, SNODE ,
& NOFSUB, XLINDX, LINDX , XLNZ , MRGLNK,
& RCHLNK, MARKER, FLAG )
C
C***********************************************************************
C
C -----------
C PARAMETERS.
C -----------
INTEGER ADJLEN, FLAG , NEQNS , NOFSUB, NSUPER
INTEGER ADJNCY(ADJLEN), COLCNT(NEQNS) ,
& INVP(NEQNS) , MARKER(NEQNS) ,
& MRGLNK(NSUPER), LINDX(NOFSUB) ,
& PERM(NEQNS) , RCHLNK(0:NEQNS),
& SNODE(NEQNS) , XSUPER(NSUPER+1)
INTEGER XADJ(NEQNS+1) , XLINDX(NSUPER+1),
& XLNZ(NEQNS+1)
C
C ----------------
C LOCAL VARIABLES.
C ----------------
INTEGER FSTCOL, HEAD , I , JNZBEG, JNZEND,
& JPTR , JSUP , JWIDTH, KNZ , KNZBEG,
& KNZEND, KPTR , KSUP , LENGTH, LSTCOL,
& NEWI , NEXTI , NODE , NZBEG , NZEND ,
& PCOL , PSUP , POINT , TAIL , WIDTH
C
C***********************************************************************
C
FLAG = 0
IF ( NEQNS .LE. 0 ) RETURN
C
C ---------------------------------------------------
C INITIALIZATIONS ...
C NZEND : POINTS TO THE LAST USED SLOT IN LINDX.
C TAIL : END OF LIST INDICATOR
C (IN RCHLNK(*), NOT MRGLNK(*)).
C MRGLNK : CREATE EMPTY LISTS.
C MARKER : "UNMARK" THE INDICES.
C ---------------------------------------------------
NZEND = 0
HEAD = 0
TAIL = NEQNS + 1
POINT = 1
DO 50 I = 1, NEQNS
MARKER(I) = 0
XLNZ(I) = POINT
POINT = POINT + COLCNT(I)
50 CONTINUE
XLNZ(NEQNS+1) = POINT
POINT = 1
DO 100 KSUP = 1, NSUPER
MRGLNK(KSUP) = 0
FSTCOL = XSUPER(KSUP)
XLINDX(KSUP) = POINT
POINT = POINT + COLCNT(FSTCOL)
100 CONTINUE
XLINDX(NSUPER+1) = POINT
C
C ---------------------------
C FOR EACH SUPERNODE KSUP ...
C ---------------------------
DO 1000 KSUP = 1, NSUPER
C
C ---------------------------------------------------------
C INITIALIZATIONS ...
C FSTCOL : FIRST COLUMN OF SUPERNODE KSUP.
C LSTCOL : LAST COLUMN OF SUPERNODE KSUP.
C KNZ : WILL COUNT THE NONZEROS OF L IN COLUMN KCOL.
C RCHLNK : INITIALIZE EMPTY INDEX LIST FOR KCOL.
C ---------------------------------------------------------
FSTCOL = XSUPER(KSUP)
LSTCOL = XSUPER(KSUP+1) - 1
WIDTH = LSTCOL - FSTCOL + 1
LENGTH = COLCNT(FSTCOL)
KNZ = 0
RCHLNK(HEAD) = TAIL
JSUP = MRGLNK(KSUP)
C
C -------------------------------------------------
C IF KSUP HAS CHILDREN IN THE SUPERNODAL E-TREE ...
C -------------------------------------------------
IF ( JSUP .GT. 0 ) THEN
C ---------------------------------------------
C COPY THE INDICES OF THE FIRST CHILD JSUP INTO
C THE LINKED LIST, AND MARK EACH WITH THE VALUE
C KSUP.
C ---------------------------------------------
JWIDTH = XSUPER(JSUP+1) - XSUPER(JSUP)
JNZBEG = XLINDX(JSUP) + JWIDTH
JNZEND = XLINDX(JSUP+1) - 1
DO 200 JPTR = JNZEND, JNZBEG, -1
NEWI = LINDX(JPTR)
KNZ = KNZ+1
MARKER(NEWI) = KSUP
RCHLNK(NEWI) = RCHLNK(HEAD)
RCHLNK(HEAD) = NEWI
200 CONTINUE
C ------------------------------------------
C FOR EACH SUBSEQUENT CHILD JSUP OF KSUP ...
C ------------------------------------------
JSUP = MRGLNK(JSUP)
300 CONTINUE
IF ( JSUP .NE. 0 .AND. KNZ .LT. LENGTH ) THEN
C ----------------------------------------
C MERGE THE INDICES OF JSUP INTO THE LIST,
C AND MARK NEW INDICES WITH VALUE KSUP.
C ----------------------------------------
JWIDTH = XSUPER(JSUP+1) - XSUPER(JSUP)
JNZBEG = XLINDX(JSUP) + JWIDTH
JNZEND = XLINDX(JSUP+1) - 1
NEXTI = HEAD
DO 500 JPTR = JNZBEG, JNZEND
NEWI = LINDX(JPTR)
400 CONTINUE
I = NEXTI
NEXTI = RCHLNK(I)
IF ( NEWI .GT. NEXTI ) GO TO 400
IF ( NEWI .LT. NEXTI ) THEN
KNZ = KNZ+1
RCHLNK(I) = NEWI
RCHLNK(NEWI) = NEXTI
MARKER(NEWI) = KSUP
NEXTI = NEWI
ENDIF
500 CONTINUE
JSUP = MRGLNK(JSUP)
GO TO 300
ENDIF
ENDIF
C ---------------------------------------------------
C STRUCTURE OF A(*,FSTCOL) HAS NOT BEEN EXAMINED YET.
C "SORT" ITS STRUCTURE INTO THE LINKED LIST,
C INSERTING ONLY THOSE INDICES NOT ALREADY IN THE
C LIST.
C ---------------------------------------------------
IF ( KNZ .LT. LENGTH ) THEN
NODE = PERM(FSTCOL)
KNZBEG = XADJ(NODE)
KNZEND = XADJ(NODE+1) - 1
DO 700 KPTR = KNZBEG, KNZEND
NEWI = ADJNCY(KPTR)
NEWI = INVP(NEWI)
IF ( NEWI .GT. FSTCOL .AND.
& MARKER(NEWI) .NE. KSUP ) THEN
C --------------------------------
C POSITION AND INSERT NEWI IN LIST
C AND MARK IT WITH KCOL.
C --------------------------------
NEXTI = HEAD
600 CONTINUE
I = NEXTI
NEXTI = RCHLNK(I)
IF ( NEWI .GT. NEXTI ) GO TO 600
KNZ = KNZ + 1
RCHLNK(I) = NEWI
RCHLNK(NEWI) = NEXTI
MARKER(NEWI) = KSUP
ENDIF
700 CONTINUE
ENDIF
C ------------------------------------------------------------
C IF KSUP HAS NO CHILDREN, INSERT FSTCOL INTO THE LINKED LIST.
C ------------------------------------------------------------
IF ( RCHLNK(HEAD) .NE. FSTCOL ) THEN
RCHLNK(FSTCOL) = RCHLNK(HEAD)
RCHLNK(HEAD) = FSTCOL
KNZ = KNZ + 1
ENDIF
C
C --------------------------------------------
C COPY INDICES FROM LINKED LIST INTO LINDX(*).
C --------------------------------------------
NZBEG = NZEND + 1
NZEND = NZEND + KNZ
IF ( NZEND+1 .NE. XLINDX(KSUP+1) ) GO TO 8000
I = HEAD
DO 800 KPTR = NZBEG, NZEND
I = RCHLNK(I)
LINDX(KPTR) = I
800 CONTINUE
C
C ---------------------------------------------------
C IF KSUP HAS A PARENT, INSERT KSUP INTO ITS PARENT'S
C "MERGE" LIST.
C ---------------------------------------------------
IF ( LENGTH .GT. WIDTH ) THEN
PCOL = LINDX ( XLINDX(KSUP) + WIDTH )
PSUP = SNODE(PCOL)
MRGLNK(KSUP) = MRGLNK(PSUP)
MRGLNK(PSUP) = KSUP
ENDIF
C
1000 CONTINUE
C
RETURN
C
C -----------------------------------------------
C INCONSISTENCY IN DATA STRUCTURE WAS DISCOVERED.
C -----------------------------------------------
8000 CONTINUE
FLAG = -2
RETURN
C
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C****** BFINIT ..... INITIALIZATION FOR BLOCK FACTORIZATION ******
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE COMPUTES ITEMS NEEDED BY THE LEFT-LOOKING
C BLOCK-TO-BLOCK CHOLESKY FACTORITZATION ROUTINE BLKFCT.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C NSUPER - NUMBER OF SUPERNODES.
C XSUPER - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING
C THE SUPERNODE PARTITIONING.
C SNODE - SUPERNODE MEMBERSHIP.
C (XLINDX,LINDX) - ARRAYS DESCRIBING THE SUPERNODAL STRUCTURE.
C CACHSZ - CACHE SIZE (IN KBYTES).
C
C OUTPUT PARAMETERS:
C TMPSIZ - SIZE OF WORKING STORAGE REQUIRED BY BLKFCT.
C SPLIT - SPLITTING OF SUPERNODES SO THAT THEY FIT
C INTO CACHE.
C
C***********************************************************************
C
SUBROUTINE BFINIT ( NEQNS , NSUPER, XSUPER, SNODE , XLINDX,
& LINDX , CACHSZ, TMPSIZ, SPLIT )
C
C***********************************************************************
C
INTEGER CACHSZ, NEQNS , NSUPER, TMPSIZ
INTEGER XLINDX(*) , XSUPER(*)
INTEGER LINDX (*) , SNODE (*) ,
& SPLIT(*)
C
C***********************************************************************
C
C ---------------------------------------------------
C DETERMINE FLOATING POINT WORKING SPACE REQUIREMENT.
C ---------------------------------------------------
CALL FNTSIZ ( NSUPER, XSUPER, SNODE , XLINDX, LINDX ,
& TMPSIZ )
C
C -------------------------------
C PARTITION SUPERNODES FOR CACHE.
C -------------------------------
CALL FNSPLT ( NEQNS , NSUPER, XSUPER, XLINDX, CACHSZ,
& SPLIT )
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C****** FNTSIZ ..... COMPUTE WORK STORAGE SIZE FOR BLKFCT ******
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE DETERMINES THE SIZE OF THE WORKING STORAGE
C REQUIRED BY BLKFCT.
C
C INPUT PARAMETERS:
C NSUPER - NUMBER OF SUPERNODES.
C XSUPER - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING
C THE SUPERNODE PARTITIONING.
C SNODE - SUPERNODE MEMBERSHIP.
C (XLINDX,LINDX) - ARRAYS DESCRIBING THE SUPERNODAL STRUCTURE.
C
C OUTPUT PARAMETERS:
C TMPSIZ - SIZE OF WORKING STORAGE REQUIRED BY BLKFCT.
C
C***********************************************************************
C
SUBROUTINE FNTSIZ ( NSUPER, XSUPER, SNODE , XLINDX,
& LINDX , TMPSIZ )
C
C***********************************************************************
C
INTEGER NSUPER, TMPSIZ
INTEGER XLINDX(*) , XSUPER(*)
INTEGER LINDX (*) , SNODE (*)
C
INTEGER BOUND , CLEN , CURSUP, I , IBEGIN, IEND ,
& KSUP , LENGTH, NCOLS , NXTSUP,
& TSIZE , WIDTH
C
C***********************************************************************
C
C RETURNS SIZE OF TEMP ARRAY USED BY BLKFCT FACTORIZATION ROUTINE.
C NOTE THAT THE VALUE RETURNED IS AN ESTIMATE, THOUGH IT IS USUALLY
C TIGHT.
C
C ----------------------------------------
C COMPUTE SIZE OF TEMPORARY STORAGE VECTOR
C NEEDED BY BLKFCT.
C ----------------------------------------
TMPSIZ = 0
DO 500 KSUP = NSUPER, 1, -1
NCOLS = XSUPER(KSUP+1) - XSUPER(KSUP)
IBEGIN = XLINDX(KSUP) + NCOLS
IEND = XLINDX(KSUP+1) - 1
LENGTH = IEND - IBEGIN + 1
BOUND = LENGTH * (LENGTH + 1) / 2
IF ( BOUND .GT. TMPSIZ ) THEN
CURSUP = SNODE(LINDX(IBEGIN))
CLEN = XLINDX(CURSUP+1) - XLINDX(CURSUP)
WIDTH = 0
DO 400 I = IBEGIN, IEND
NXTSUP = SNODE(LINDX(I))
IF ( NXTSUP .EQ. CURSUP ) THEN
WIDTH = WIDTH + 1
IF ( I .EQ. IEND ) THEN
IF ( CLEN .GT. LENGTH ) THEN
TSIZE = LENGTH * WIDTH -
& (WIDTH - 1) * WIDTH / 2
TMPSIZ = MAX ( TSIZE , TMPSIZ )
ENDIF
ENDIF
ELSE
IF ( CLEN .GT. LENGTH ) THEN
TSIZE = LENGTH * WIDTH -
& (WIDTH - 1) * WIDTH / 2
TMPSIZ = MAX ( TSIZE , TMPSIZ )
ENDIF
LENGTH = LENGTH - WIDTH
BOUND = LENGTH * (LENGTH + 1) / 2
IF ( BOUND .LE. TMPSIZ ) GO TO 500
WIDTH = 1
CURSUP = NXTSUP
CLEN = XLINDX(CURSUP+1) - XLINDX(CURSUP)
ENDIF
400 CONTINUE
ENDIF
500 CONTINUE
C
RETURN
END
C***********************************************************************
C***********************************************************************
C
C Version: 0.3
C Last modified: December 27, 1994
C Authors: Esmond G. Ng and Barry W. Peyton
C
C Mathematical Sciences Section, Oak Ridge National Laboratory
C
C***********************************************************************
C***********************************************************************
C**** FNSPLT ..... COMPUTE FINE PARTITIONING OF SUPERNODES *****
C***********************************************************************
C***********************************************************************
C
C PURPOSE:
C THIS SUBROUTINE DETERMINES A FINE PARTITIONING OF SUPERNODES
C WHEN THERE IS A CACHE AVAILABLE ON THE MACHINE. THE FINE
C PARTITIONING IS CHOSEN SO THAT DATA RE-USE IS MAXIMIZED.
C
C INPUT PARAMETERS:
C NEQNS - NUMBER OF EQUATIONS.
C NSUPER - NUMBER OF SUPERNODES.
C XSUPER - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING
C THE SUPERNODE PARTITIONING.
C XLINDX - INTEGER ARRAY OF SIZE (NSUPER+1) CONTAINING
C POINTERS IN THE SUPERNODE INDICES.
C CACHSZ - CACHE SIZE IN KILO BYTES.
C IF THERE IS NO CACHE, SET CACHSZ = 0.
C
C OUTPUT PARAMETERS:
C SPLIT - INTEGER ARRAY OF SIZE NEQNS CONTAINING THE
C FINE PARTITIONING.
C
C***********************************************************************
C
SUBROUTINE FNSPLT ( NEQNS , NSUPER, XSUPER, XLINDX,
& CACHSZ, SPLIT )
C
C***********************************************************************
C
C -----------
C PARAMETERS.
C -----------
INTEGER CACHSZ, NEQNS , NSUPER
INTEGER XSUPER(*), SPLIT(*)
INTEGER XLINDX(*)
C
C ----------------
C LOCAL VARIABLES.
C ----------------
INTEGER CACHE , CURCOL, FSTCOL, HEIGHT, KCOL ,
1 KSUP , LSTCOL, NCOLS , NXTBLK, USED ,
1 WIDTH
C
C *******************************************************************
C
C --------------------------------------------
C COMPUTE THE NUMBER OF 8-BYTE WORDS IN CACHE.
C --------------------------------------------
IF ( CACHSZ .LE. 0 ) THEN
CACHE = 2 000 000 000
ELSE
CACHE = ( FLOAT(CACHSZ) * 1024. / 8. ) * 0.9
ENDIF
C
C ---------------
C INITIALIZATION.
C ---------------
DO 100 KCOL = 1, NEQNS
SPLIT(KCOL) = 0
100 CONTINUE
C
C ---------------------------
C FOR EACH SUPERNODE KSUP ...
C ---------------------------
DO 1000 KSUP = 1, NSUPER
C -----------------------
C ... GET SUPERNODE INFO.
C -----------------------
HEIGHT = XLINDX(KSUP+1) - XLINDX(KSUP)
FSTCOL = XSUPER(KSUP)
LSTCOL = XSUPER(KSUP+1) - 1
WIDTH = LSTCOL - FSTCOL + 1
NXTBLK = FSTCOL
C --------------------------------------
C ... UNTIL ALL COLUMNS OF THE SUPERNODE
C HAVE BEEN PROCESSED ...
C --------------------------------------
CURCOL = FSTCOL - 1
200 CONTINUE
C -------------------------------------------
C ... PLACE THE FIRST COLUMN(S) IN THE CACHE.
C -------------------------------------------
CURCOL = CURCOL + 1
IF ( CURCOL .LT. LSTCOL ) THEN
CURCOL = CURCOL + 1
NCOLS = 2
USED = 3 * HEIGHT - 1
HEIGHT = HEIGHT - 2
ELSE
NCOLS = 1
USED = 2 * HEIGHT
HEIGHT = HEIGHT - 1
ENDIF
C
C --------------------------------------
C ... WHILE THE CACHE IS NOT FILLED AND
C THERE ARE COLUMNS OF THE SUPERNODE
C REMAINING TO BE PROCESSED ...
C --------------------------------------
300 CONTINUE
IF ( USED+HEIGHT .LT. CACHE .AND.
& CURCOL .LT. LSTCOL ) THEN
C --------------------------------
C ... ADD ANOTHER COLUMN TO CACHE.
C --------------------------------
CURCOL = CURCOL + 1
NCOLS = NCOLS + 1
USED = USED + HEIGHT
HEIGHT = HEIGHT - 1
GO TO 300
ENDIF
C -------------------------------------
C ... RECORD THE NUMBER OF COLUMNS THAT
C FILLED THE CACHE.
C -------------------------------------
SPLIT(NXTBLK) = NCOLS
NXTBLK = NXTBLK + 1
C --------------------------
C ... GO PROCESS NEXT BLOCK.
C --------------------------
IF ( CURCOL .LT. LSTCOL ) GO TO 200
1000 CONTINUE
C
RETURN
END
|