File: random.sci

package info (click to toggle)
scilab 4.1.2-6
  • links: PTS, VCS
  • area: non-free
  • in suites: lenny
  • size: 113,992 kB
  • ctags: 65,732
  • sloc: ansic: 406,468; fortran: 242,412; xml: 223,812; tcl: 46,703; sh: 10,945; ml: 9,441; makefile: 4,697; cpp: 1,354; java: 926; csh: 260; yacc: 247; perl: 130; lex: 126; asm: 72; lisp: 30
file content (133 lines) | stat: -rw-r--r-- 2,990 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
function [y]=RndInt(m,n,imin,imax) 
	// discrete uniform random number 
	//-------------------------------
	// Copyright ENPC 
	y=rand(m,n,'uniform')
	y=int(floor(y*(imax+1-imin)+ imin ));
endfunction 


function [y]=RndDisc(m,n,x,p)
	// discrete law random number
	// sum p_i delta_{x_i}
	//-------------------------------
	p1=[0,p];p1=cumsum(p1);
	y=rand(m,n,'uniform')
	N=prod(size(x));
	res=0*ones(m*n);
	for i=1:N,z=0*ones(m*n,1),id=find( p1(i) <= y & y < p1(i+1) ),
		z(id)=x(i)*ones(prod(size(id))),res=res+z;
	end
	y=matrix(res,m,n);
endfunction 

function [y]=Binomial(m,n,pb,nb) 
	// Binomial law (p,N) 
	// P{X=n} = C_N^n p^n (1-p)^(N-n)
	//----------------------------------
	res=[];
	// we use blocks of size 100 to avoid overflows 
	ntir=100;
	ntirc=ntir;
	y=rand(ntir,nb,'uniform');
	indy= find( y < pb);
	y=0*ones(y);
	y(indy)=1;
	y=sum(y,'c')
	res=[res;y];
	while ( ntirc < m*n )
		y=rand(ntir,nb,'uniform');
		indy= find(y< pb);
		y=0*ones(y);
		y(indy)=1;
		y=sum(y,'c')
		res=[res;y];
		ntirc=ntirc+ntir;
	end
	y=matrix(res(1:m*n),m,n);
endfunction 

function [y]=Geom(m,n,p) 
	// P(0)= 0 P(i) = p*(1-p)^{n-1} P(inf)=0
	// E = 1/p ; sig2= (1-p)/p^2
	//--------------------------------------
	if p >= 1 then write(%io(2),'p must be < 1');end
	y=0*ones(m,n)
	for i=1:m*n,
		samples=1
		z=rand(1,1,'uniform');
		while( z < 1-p) ,z=rand(1,1,'uniform'); samples=samples+1;end
		y(i)= samples;
	end
	y=matrix(y,m,n)
endfunction 


function [y]=Poisson(m,n,pmean) 
	// P{n} = exp(-lambda)lambda^n/n!
	// pmean =lambda 
	//----------------------------
	y=0*ones(m,n)
	bound= exp(-pmean);
	for i=1:m*n, 
	count=0
	lprod=1
	while( lprod >= bound), lprod=lprod*rand(1,1,'uniform');
	count=count+1;end
	y(i)=count-1;
	end
	y=matrix(y,m,n)
endfunction 

function [y]=Exp(m,n,lambda)
	// lambda exp(-lambda x) x>=0 
	// ---------------------------
	y=(-1/lambda)* log(rand(m,n,'uniform'));
endfunction 

function [y]=Weibull(m,n,Alpha,Beta)
	//------------------------------- 
	y=rand(m,n,'uniform')
	y= (Beta*( - log(1-y)))^(1/Alpha)
endfunction 

function [y]=HyperGeom(m,n,Mean,var)
	//------------------------------- 
	z = var / (Mean * Mean);
	pP = 0.5 * (1.0 - sqrt((z - 1.0) / ( z + 1.0 )));
	y=rand(m,n,'uniform')
	zz=find( y > pP) ;
	y=pP*ones(y);
	y(zz) = (1-pP)*ones(zz);
	y1=rand(m,n,'uniform')
	y=-Mean * log(y1) ./ (2.0 * y) ;
endfunction 

function [y]=Erlang(m,n,pMean,pVariance) 
	//------------------------------- 
	k = int( (pMean * pMean ) / pVariance + 0.5 );
	if (k <= 0) then k=1;end
	a = k / pMean;
	// we use blocks of size 100 to avoid overflows 
	res=[];
	ntir=100;
	ntirc=ntir;
	y=rand(ntir,k,'uniform');
	y= -log(prod(y,'r'))/a;
	res=[res;y];
	while ( ntirc < m*n )
	y=rand(ntir,k,'uniform');
	y= -log(prod(y,'r'))/a;
	res=[res;y];
	ntirc=ntirc+ntir;
	end 
	y=matrix(res(1:m*n),m,n);
endfunction 

function [y]=RndPerm(n) 
	//------------------------------- 
	// a uniform random permutation of (1:n)
	y=rand(1,n,'uniform')
	[us,z]=sort(y);
endfunction