1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
<?xml version="1.0" encoding="UTF-8"?>
<refentry xmlns="http://docbook.org/ns/docbook" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:svg="http://www.w3.org/2000/svg" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:db="http://docbook.org/ns/docbook" version="5.0-subset Scilab" xml:lang="en" xml:id="insertion">
<info>
<pubdate>$LastChangedDate$</pubdate>
</info>
<refnamediv>
<refname>insertion</refname>
<refpurpose> partial variable assignation
or modification</refpurpose>
</refnamediv>
<refnamediv xml:id="assignation">
<refname>assignation</refname>
<refpurpose> partial variable assignation</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>x(i,j)=a
x(i)=a
l(i)=a
l(k1)...(kn)(i)=a or l(list(k1,...,kn,i))=a
l(k1)...(kn)(i,j)=a or l(list(k1,...,kn,list(i,j))=a</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>x</term>
<listitem>
<para>matrix of any kind (constant, sparse, polynomial,...)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>l</term>
<listitem>
<para>list</para>
</listitem>
</varlistentry>
<varlistentry>
<term>i,j</term>
<listitem>
<para>indices</para>
</listitem>
</varlistentry>
<varlistentry>
<term>k1,...kn</term>
<listitem>
<para>indices with integer value</para>
</listitem>
</varlistentry>
<varlistentry>
<term>a</term>
<listitem>
<para>new entry value</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<variablelist>
<varlistentry>
<term>MATRIX CASE</term>
<listitem>
<para>if <literal>x</literal> is a matrix the indices <literal>i</literal> and <literal>j</literal>, may be:</para>
<variablelist>
<varlistentry>
<term>Real scalars or vectors or matrices</term>
<listitem>
<para>In this case the values given as indices should be positive and
it is only their integer part which taken into account.</para>
<itemizedlist>
<listitem>
<para>if <literal>a</literal> is a matrix with
dimensions
<literal>(size(i,'*'),size(j,'*'))</literal>,
<literal>x(i,j)=a</literal> returns a new <literal>x</literal> matrix
such as <literal>x(int(i(l)),int(j(k)))=a(l,k) </literal> for
<literal>l</literal> from 1 to
<literal>size(i,'*')</literal> and <literal>k</literal> from
1 to <literal>size(j,'*')</literal>, other initial
entries of <literal>x</literal> are unchanged. </para>
</listitem>
<listitem>
<para> if <literal>a</literal> is a scalar
<literal>x(i,j)=a</literal> returns a new <literal>x</literal> matrix
such as <literal>x(int(i(l)),int(j(k)))=a</literal> for
<literal>l</literal> from 1 to <literal>size(i,'*')</literal>
and <literal>k</literal> from 1 to
<literal>size(j,'*')</literal>, other initial entries
of <literal>x</literal> are unchanged. </para>
</listitem>
<listitem>
<para> If <literal>i</literal> or <literal>j</literal>
maximum value exceed corresponding <literal>x</literal> matrix
dimension, array <literal>x</literal> is previously extended to the
required dimensions with zeros entries for standard
matrices, 0 length character string for string matrices and
false values for boolean matrices.
</para>
</listitem>
<listitem>
<para><literal>x(i,j)=[]</literal> kills rows
specified by <literal>i</literal> if <literal>j</literal> matches all
columns of <literal>x</literal> or kills columns specified by
<literal>j</literal> if <literal>i</literal> matches all rows of
<literal>x</literal>. In other cases <literal>x(i,j)=[]</literal>
produce an error. </para>
</listitem>
<listitem>
<para><literal>x(i)=a</literal> with <literal>a</literal> a
vector returns a new <literal>x</literal> matrix such as
<literal>x(int(i(l)))=a(l)</literal> for <literal>l</literal> from 1 to
<literal>size(i,'*')</literal> , other initial entries
of <literal>x</literal> are unchanged. </para>
</listitem>
<listitem>
<para><literal>x(i)=a</literal> with <literal>a</literal> a
scalar returns a new <literal>x</literal> matrix such as
<literal>x(int(i(l)))=a</literal> for <literal>l</literal> from 1 to
<literal>size(i,'*')</literal> , other initial entries
of <literal>x</literal> are unchanged. </para>
<para>
If <literal>i</literal> maximum value exceed
<literal>size(x,1)</literal>, <literal>x</literal> is previously
extended to the required dimension with zeros entries for
standard matrices, 0 length character string for string
matrices and false values for boolean matrices.
</para>
<variablelist>
<varlistentry>
<term>if</term>
<listitem>
<para><literal>x</literal> is a 1x1</para>
<para>
matrix <literal>a</literal> may be a row (respectively a
column) vector with dimension
<literal>size(i,'*')</literal>. Resulting
<literal>x</literal> matrix is a row (respectively a column)
vector
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>if</term>
<listitem>
<para><literal>x</literal> is a row</para>
<para>
vector <literal>a</literal> must be a row vector with
dimension <literal>size(i,'*')</literal>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>if</term>
<listitem>
<para><literal>x</literal> is a column</para>
<para>
vector <literal>a</literal> must be a column vector with
dimension <literal>size(i,'*')</literal>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>if</term>
<listitem>
<para><literal>x</literal> is a general</para>
<para>
matrix <literal>a</literal> must be a row or column vector
with dimension <literal>size(i,'*')</literal> and
<literal>i</literal> maximum value cannot exceed
<literal>size(x,'*')</literal>,
</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
<listitem>
<para><literal>x(i)=[]</literal> kills entries
specified by <literal>i</literal>.
</para>
</listitem>
</itemizedlist>
</listitem>
</varlistentry>
<varlistentry>
<term>The : symbol</term>
<listitem>
<para>the <literal>:</literal> symbol stands for "all elements".</para>
<itemizedlist>
<listitem>
<para><literal>x(i,:)=a</literal> is interpreted as
<literal>x(i,1:size(x,2))=a</literal></para>
</listitem>
<listitem>
<para><literal>x(:,j)=a</literal> is interpreted as
<literal>x(1:size(x,1),j)=a</literal></para>
</listitem>
<listitem>
<para><literal>x(:)=a</literal> returns in
<literal>x</literal> the <literal>a</literal> matrix reshaped
according to x
dimensions. <literal>size(x,'*')</literal> must be
equal to <literal>size(a,'*')</literal></para>
</listitem>
</itemizedlist>
</listitem>
</varlistentry>
<varlistentry>
<term>Vectors of boolean</term>
<listitem>
<para>If an index (<literal>i</literal> or <literal>j</literal> )is a vector
of booleans it is interpreted as <literal>find(i)</literal> or
respectively <literal>find(j)</literal></para>
</listitem>
</varlistentry>
<varlistentry>
<term>Polynomials</term>
<listitem>
<para>If an index (<literal>i</literal> or <literal>j</literal> )is a vector of
polynomials or implicit polynomial vector it is interpreted
as <literal>horner(i,m)</literal> or respectively
<literal>horner(j,n)</literal> where <literal>m</literal> and
<literal>n</literal> are associated <literal>x</literal> dimensions.
Even if this feature works for all polynomials, it is
recommended to use polynomials in <literal>$</literal> for
readability.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>LIST OR TLIST CASE</term>
<listitem>
<itemizedlist>
<listitem>
<para>If they are present
the <literal>ki</literal> give the path to a sub-list entry of
<literal>l</literal> data structure. They allow a recursive insertion
without intermediate copies. The <literal>l(k1)...(kn)(i)=a</literal>
and <literal>l(list(k1,...,kn,i)=a)</literal> instructions are
interpreted as:</para>
<para>
<literal>lk1 = l(k1)</literal>
<literal> .. = .. </literal>
</para>
<para>
<literal>lkn = lkn-1(kn)</literal>
<literal> lkn(i) = a</literal>
</para>
<para>
<literal>lkn-1(kn) = lkn</literal>
<literal> .. = .. </literal>
<literal>l(k1) = lk1</literal>
</para>
<para>
And the <literal>l(k1)...(kn)(i,j)=a</literal> and <literal>l(list(k1,...,kn,list(i,j))=a</literal>
instructions are interpreted as:</para>
<para>
<literal>lk1 = l(k1)</literal>
<literal> .. = .. </literal>
</para>
<para>
<literal>lkn = lkn-1(kn)</literal>
<literal>lkn(i,j) = a</literal>
</para>
<para>
<literal>lkn-1(kn) = lkn</literal>
<literal> .. = .. </literal>
<literal>l(k1)= lk1</literal>
</para>
</listitem>
<listitem>
<para><literal>i</literal> may be :</para>
<itemizedlist>
<listitem>
<para> a real non negative scalar.
<literal>l(0)=a</literal> adds an entry on the "left"
of the list <literal>l(i)=a</literal> sets the <literal>i</literal>
entry of the list <literal>l</literal> to <literal>a</literal>. if
<literal>i>size(l)</literal>, <literal>l</literal> is previously
extended with zero length entries (undefined).
<literal>l(i)=null()</literal> suppress the <literal>i</literal>th list
entry.</para>
</listitem>
<listitem>
<para> a polynomial. If <literal>i</literal> is a
polynomial it is interpreted as <literal>horner(i,m)</literal>
where <literal>m=size(l)</literal>. Even if this feature works
for all polynomials, it is recommended to use polynomials
in <literal>$</literal> for readability.</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para><literal>k1,..kn</literal> may be :</para>
<itemizedlist>
<listitem>
<para>
real positive scalar.</para>
</listitem>
<listitem>
<para> a polynomial,interpreted as
<literal>horner(ki,m)</literal> where <literal>m</literal> is the
corresponding sub-list size.</para>
</listitem>
<listitem>
<para> a character string associated with a
sub-list entry name.</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Remarks</title>
<para>
For soft coded matrix types such as rational functions and state space linear systems, <literal>x(i)</literal> syntax may not be used for vector entry insertion due to confusion with list entry insertion. <literal>x(1,j)</literal> or <literal>x(i,1)</literal> syntax must be used.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
// MATRIX CASE
a=[1 2 3;4 5 6]
a(1,2)=10
a([1 1],2)=[-1;-2]
a(:,1)=[8;5]
a(1,3:-1:1)=[77 44 99]
a(1)=%s
a(6)=%s+1
a(:)=1:6
a([%t %f],1)=33
a(1:2,$-1)=[2;4]
a($:-1:1,1)=[8;7]
a($)=123
//
x='test'
x([4 5])=['4','5']
//
b=[1/%s,(%s+1)/(%s-1)]
b(1,1)=0
b(1,$)=b(1,$)+1
b(2)=[1 2] // the numerator
// LIST OR TLIST CASE
l=list(1,'qwerw',%s)
l(1)='Changed'
l(0)='Added'
l(6)=['one more';'added']
//
//
dts=list(1,tlist(['x';'a';'b'],10,[2 3]));
dts(2).a=33
dts(2)('b')(1,2)=-100
]]></programlisting>
</refsection>
<refsection>
<title>See Also</title>
<simplelist type="inline">
<member>
<link linkend="find">find</link>
</member>
<member>
<link linkend="horner">horner</link>
</member>
<member>
<link linkend="parents">parents</link>
</member>
<member>
<link linkend="extraction">extraction</link>
</member>
</simplelist>
</refsection>
</refentry>
|