File: optim_ga.sci

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (168 lines) | stat: -rw-r--r-- 4,352 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - Yann COLLETTE <yann.collette@renault.com>
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

function [pop_opt, fobj_pop_opt, pop_init, fobj_pop_init] = optim_ga(ga_f, pop_size, nb_generation, p_mut, p_cross, Log, param)

[nargout, nargin] = argn();

if ~isdef('param','local') then
  param = [];
end

[codage_func,err]    = get_param(param,'codage_func',coding_ga_identity);
[init_func,err]      = get_param(param,'init_func',init_ga_default);
[crossover_func,err] = get_param(param,'crossover_func',crossover_ga_default);
[mutation_func,err]  = get_param(param,'mutation_func',mutation_ga_default);
[selection_func,err] = get_param(param,'selection_func',selection_ga_elitist);
[nb_couples,err]     = get_param(param,'nb_couples',100);
[pressure,err]       = get_param(param,'pressure',0.05);

if ~isdef('ga_f','local') then
  error(sprintf(gettext("%s: ga_f is mandatory"),"optim_ga"));
else
  if typeof(ga_f)=='list' then
    deff('y=_ga_f(x)','y=ga_f(1)(x, ga_f(2:$))');
  else
    deff('y=_ga_f(x)','y=ga_f(x)');
  end
end

if ~isdef('pop_size','local') then
  pop_size = 100;
end
if ~isdef('nb_generation','local') then
  nb_generation = 10;
end
if ~isdef('p_mut','local') then
  p_mut = 0.1;
end
if ~isdef('p_cross','local') then
  p_cross = 0.7;
end
if ~isdef('Log','local') then
  Log = %F;
end

// Initialization of the population
if (Log) then
  printf(gettext("%s: Initialization of the population\n"),"optim_ga");
end

Pop = list();
Pop = init_func(pop_size,param);

if (nargout==4) then
  pop_init = Pop;
end

// Code the individuals
Pop = codage_func(Pop,'code',param);

for i=1:length(Pop)
  FObj_Pop(i) = _ga_f(Pop(i));
end
Total_FObj = FObj_Pop;

if (nargout==4) then
  fobj_pop_init = FObj_Pop;
end

FObj_Pop_Max = max(FObj_Pop);
FObj_Pop_Min = min(FObj_Pop);

// Normalization of the efficiency

Efficiency = (1 - pressure) * (FObj_Pop_Max - FObj_Pop)/max([FObj_Pop_Max - FObj_Pop_Min, %eps]) + pressure;

// The genetic algorithm
for i=1:nb_generation
  if (Log) then
    printf(gettext("%s: iteration %d / %d"), "optim_ga", i, nb_generation);
  end
  //
  // Selection
  //
  Indiv1 = list();
  Indiv2 = list();
  Wheel = cumsum(Efficiency);
  for j=1:nb_couples
    // Selection of the first individual in the couple
    Shoot = rand(1,1)*Wheel($);
    Index = 1;
    while((Wheel(Index)<Shoot)&(Index<length(Wheel))) 
      Index = Index + 1;
    end
    Indiv1(j)      = Pop(Index);
    FObj_Indiv1(j) = Total_FObj(Index);
    // Selection of the second individual in the couple
    Shoot = rand(1,1)*Wheel($);
    Index = 1;
    while((Wheel(Index)<Shoot)&(Index<length(Wheel))) 
      Index = Index + 1;
    end
    Indiv2(j)      = Pop(Index);
    FObj_Indiv2(j) = Total_FObj(Index);
  end
  //
  // Crossover
  //
  for j=1:nb_couples
    if (p_cross>rand(1,1)) then
      [x1, x2] = crossover_func(Indiv1(j), Indiv2(j), param);
      Indiv1(j) = x1;
      Indiv2(j) = x2;
      ToCompute_I1(j) = %T;
      ToCompute_I2(j) = %T;
    else
      ToCompute_I1(j) = %F;
      ToCompute_I2(j) = %F;
    end
  end
  //
  // Mutation
  //
  for j=1:nb_couples
    if (p_mut>rand(1,1)) then
      x1 = mutation_func(Indiv1(j),param);
      Indiv1(j) = x1;
      ToCompute_I1(j) = %T;
    end
    if (p_mut>rand(1,1)) then
      x2 = mutation_func(Indiv2(j),param);
      Indiv2(j) = x2;
      ToCompute_I2(j) = %T;
    end
  end
  //
  // Computation of the objective functions
  //
  for j=1:nb_couples
    if ToCompute_I1(j) then FObj_Indiv1(j) = _ga_f(Indiv1(j)); end
    if ToCompute_I2(j) then FObj_Indiv2(j) = _ga_f(Indiv2(j)); end
  end
  
  // Reinit ToCompute lists
  ToCompute_I1 = ToCompute_I1 & %F;
  ToCompute_I2 = ToCompute_I2 & %F;

  //
  // Recombination
  //

  [Pop, FObj_Pop] = selection_func(Pop,Indiv1,Indiv2,FObj_Pop,FObj_Indiv1,FObj_Indiv2,[],[],[],param);
  
  if (Log) then
    printf(gettext(" - min / max value found = %f / %f\n"), min(FObj_Pop), max(FObj_Pop));
  end
end

pop_opt  = Pop;
pop_opt  = codage_func(pop_opt,'decode',param);
fobj_pop_opt = FObj_Pop;
endfunction