1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - Yann COLLETTE <yann.collette@renault.com>
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
function [pop_opt, fobj_pop_opt, pop_init, fobj_pop_init] = optim_moga(ga_f, pop_size, nb_generation, p_mut, p_cross, Log, param)
[nargout, nargin] = argn();
if ~isdef('param','local') then
param = [];
end
[codage_func,err] = get_param(param,'codage_func',coding_ga_identity);
[init_func,err] = get_param(param,'init_func',init_ga_default);
[crossover_func,err] = get_param(param,'crossover_func',crossover_ga_default);
[mutation_func,err] = get_param(param,'mutation_func',mutation_ga_default);
[selection_func,err] = get_param(param,'selection_func',selection_ga_elitist);
[nb_couples,err] = get_param(param,'nb_couples',100);
[pressure,err] = get_param(param,'pressure',0.05);
if ~isdef('ga_f','local') then
error(gettext("optim_moga: ga_f is mandatory"));
end
if ~isdef('pop_size','local') then
pop_size = 100;
end
if ~isdef('nb_generation','local') then
nb_generation = 10;
end
if ~isdef('p_mut','local') then
p_mut = 0.01;
end
if ~isdef('p_cross','local') then
p_cross = 0.7;
end
if ~isdef('Log','local') then
Log = %F;
end
// Initialization of the population
if (Log) then
printf(gettext("%s: Initialization of the population\n"),"optim_moga");
end
Pop = list();
Pop = init_func(pop_size,param);
if (nargout==4) then
pop_init = Pop;
end
// Code the individuals
Pop = codage_func(Pop,'code',param);
for i=1:length(Pop)
MO_FObj_Pop(i,:) = ga_f(Pop(i));
end
// Compute the domination rank
for i=1:size(MO_FObj_Pop,1)
Index = 0;
for j=1:size(MO_FObj_Pop,1)
Index = Index + double(and(MO_FObj_Pop(i,:)<=MO_FObj_Pop(j,:)) & or(MO_FObj_Pop(i,:)<MO_FObj_Pop(j,:)));
end
FObj_Pop(i) = - (Index + 1);
end
FObj_Pop_Max = max(FObj_Pop);
FObj_Pop_Min = min(FObj_Pop);
// Normalization of the efficiency
Efficiency = (1 - pressure) * (FObj_Pop_Max - FObj_Pop) / max([FObj_Pop_Max - FObj_Pop_Min %eps]) + pressure;
if (nargout==4) then
fobj_pop_init = MO_FObj_Pop;
end
// The genetic algorithm
for i=1:nb_generation
if (Log) then
printf(gettext("%s: iteration %d / %d"), "optim_moga", i, nb_generation);
end
//
// Selection
//
Indiv1 = list();
Indiv2 = list();
Wheel = cumsum(Efficiency);
for j=1:nb_couples
// Selection of the first individual in the couple
Shoot = rand(1,1)*Wheel($);
Index = 1;
while((Wheel(Index)<Shoot)&(Index<length(Wheel)))
Index = Index + 1;
end
Indiv1(j) = Pop(Index);
MO_FObj_Indiv1(j,:) = MO_FObj_Pop(Index,:);
// Selection of the second individual in the couple
Shoot = rand(1,1)*Wheel($);
Index = 1;
while((Wheel(Index)<Shoot)&(Index<length(Wheel)))
Index = Index + 1;
end
Indiv2(j) = Pop(Index);
MO_FObj_Indiv2(j,:) = MO_FObj_Pop(Index,:);
end
//
// Crossover
//
for j=1:nb_couples
if (p_cross>rand(1,1)) then
[x1, x2] = crossover_func(Indiv1(j), Indiv2(j),param);
Indiv1(j) = x1;
Indiv2(j) = x2;
ToCompute_I1(j) = %T;
ToCompute_I2(j) = %T;
else
ToCompute_I1(j) = %F;
ToCompute_I2(j) = %F;
end
end
//
// Mutation
//
for j=1:nb_couples
if (p_mut>rand(1,1)) then
x1 = mutation_func(Indiv1(j),param);
Indiv1(j) = x1;
ToCompute_I1(j) = %T;
end
if (p_mut>rand(1,1)) then
x2 = mutation_func(Indiv2(j),param);
Indiv2(j) = x2;
ToCompute_I2(j) = %T;
end
end
//
// Computation of the objective functions
//
for j=1:length(Indiv1)
if ToCompute_I1(j) then MO_FObj_Indiv1(j,:) = ga_f(Indiv1(j)); end
if ToCompute_I2(j) then MO_FObj_Indiv2(j,:) = ga_f(Indiv2(j)); end
end
// Reinit ToCompute lists
ToCompute_I1 = ToCompute_I1 & %F;
ToCompute_I2 = ToCompute_I2 & %F;
// Compute the domination rank
for j=1:size(MO_FObj_Indiv1,1)
// We compute the rank for Indiv1
Index1 = 0; Index2 = 0; Index3 = 0;
for k=1:size(MO_FObj_Indiv1,1)
Index1 = Index1 + double(and(MO_FObj_Indiv1(j,:)<=MO_FObj_Indiv1(k,:)) & or(MO_FObj_Indiv1(j,:)<MO_FObj_Indiv1(k,:)));
Index2 = Index2 + double(and(MO_FObj_Indiv1(j,:)<=MO_FObj_Indiv2(k,:)) & or(MO_FObj_Indiv1(j,:)<MO_FObj_Indiv2(k,:)));
end
for k=1:size(MO_FObj_Pop,1)
Index3 = Index3 + double(and(MO_FObj_Indiv1(j,:)<=MO_FObj_Pop(k,:)) & or(MO_FObj_Indiv1(j,:)<MO_FObj_Pop(k,:)));
end
FObj_Indiv1(j) = - (Index1 + Index2 + Index3 + 1);
// We compute the rank for Indiv2
Index1 = 0; Index2 = 0; Index3 = 0;
for k=1:size(MO_FObj_Indiv1,1)
Index1 = Index1 + double(and(MO_FObj_Indiv2(j,:)<=MO_FObj_Indiv1(k,:)) & or(MO_FObj_Indiv2(j,:)<MO_FObj_Indiv1(k,:)));
Index2 = Index2 + double(and(MO_FObj_Indiv2(j,:)<=MO_FObj_Indiv2(k,:)) & or(MO_FObj_Indiv2(j,:)<MO_FObj_Indiv2(k,:)));
end
for k=1:size(MO_FObj_Pop,1)
Index3 = Index3 + double(and(MO_FObj_Indiv2(j,:)<=MO_FObj_Pop(k,:)) & or(MO_FObj_Indiv2(j,:)<MO_FObj_Pop(k,:)));
end
FObj_Indiv2(j) = - (Index1 + Index2 + Index3 + 1);
end
// We compute the rank for Pop
for j=1:size(MO_FObj_Pop,1)
Index1 = 0; Index2 = 0; Index3 = 0;
for k=1:size(MO_FObj_Indiv1,1)
Index1 = Index1 + double(and(MO_FObj_Pop(j,:)<=MO_FObj_Indiv1(k,:)) & or(MO_FObj_Pop(j,:)<MO_FObj_Indiv1(k,:)));
Index2 = Index2 + double(and(MO_FObj_Pop(j,:)<=MO_FObj_Indiv2(k,:)) & or(MO_FObj_Pop(j,:)<MO_FObj_Indiv2(k,:)));
end
for k=1:size(MO_FObj_Pop,1)
Index3 = Index3 + double(and(MO_FObj_Pop(j,:)<=MO_FObj_Pop(k,:)) & or(MO_FObj_Pop(j,:)<MO_FObj_Pop(k,:)));
end
FObj_Pop(j) = - (Index1 + Index2 + Index3 + 1);
end
//
// Recombination
//
[Pop,FObj_Pop,Efficiency,MO_FObj_Pop] = selection_func(Pop,Indiv1,Indiv2,FObj_Pop,FObj_Indiv1,FObj_Indiv2, ...
MO_FObj_Pop,MO_FObj_Indiv1,MO_FObj_Indiv2,param);
if (Log) then
printf(gettext(" - min / max value found = %f / %f\n"), min(FObj_Pop), max(FObj_Pop));
end
end
pop_opt = codage_func(Pop,'decode',param);
fobj_pop_opt = MO_FObj_Pop;
endfunction
|