File: graypolarplot.sci

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (199 lines) | stat: -rw-r--r-- 5,246 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at    
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt


function graypolarplot(theta,rho,z,varargin)
[lhs,rhs]=argn(0)
if rhs<=0 then
  rho=1:0.2:4;theta=(0:0.02:1)*2*%pi;
  z=30+round(theta'*(1+rho^2));
  clf();
  f=gcf();
  f.color_map=hotcolormap(128);
  f.background= 128;
  f.foreground=1;
  a=gca();
  a.background= 128;
  a.foreground=1;
  graypolarplot(theta,rho,z)
  return
end

if rhs<3 then
  error(msprintf(gettext("%s: Wrong number of input argument(s): At least %d expected.\n"), "graypolarplot", 3));
end


R=max(rho)
nv=size(varargin)
if nv>=1 then strf=varargin(2),else  strf='030',end
if nv>=2 then rect=varargin(4),else  rect=[-R -R R R]*1.1,end

// drawlater
fig = gcf();
immediate_drawing = fig.immediate_drawing;
fig.immediate_drawing = "off";

axes = gca();
axes.data_bounds = [rect(1), rect(2); rect(3), rect(4)];
axes.clip_state = "clipgrf";

drawGrayplot(theta,rho,z);

objectList = gce(); // get all the created objects to glue them at the end.

axes.isoview = "on";
axes.box = "off";
axes.axes_visible = ["off","off","off"];
axes.x_label.text = "";
axes.y_label.text = "";
axes.z_label.text = "";

step=R/5
r=step;dr=0.02*r;
for k=1:4
  xarc(-r,r,2*r,2*r,0,360*64)
  objectList($ + 1) = gce();
  arc = gce();
  arc.line_style = 3;
  xstring((r+dr)*cos(5*%pi/12),(r+dr)*sin(5*%pi/12),string(round(10*r)/10))
  objectList($ + 1) = gce();
  r=r+step
end
xarc(-r,r,2*r,2*r,0,360*64)
objectList($ + 1) = gce();
xstring((r+dr)*cos(5*%pi/12),(r+dr)*sin(5*%pi/12),string(round(10*r)/10))
objectList($ + 1) = gce();

rect=xstringl(0,0,'360');w=rect(3);h=rect(4);d=sqrt(w^2+h^2)/1.8
r=R+d
for k=0:11
  xsegs([0;R*cos(k*(%pi/6))],[0;R*sin(k*(%pi/6))])
  objectList($ + 1) = gce();
  arc = gce();
  arc.line_style = 3;
  xstring(r*cos(k*(%pi/6))-w/2,r*sin(k*(%pi/6))-h/2,string(k*30))
  objectList($ + 1) = gce();
end

// glue all the created objects
glue(objectList);

// drawnow
fig.immediate_drawing = immediate_drawing;

endfunction

function [x,y] = polar2Cart(rho, theta)
  x = rho * cos(theta);
  y = rho * sin(theta);
endfunction

function [nbDecomp] = computeNeededDecompos(theta)
  // Compute the needed decomposition for each patch
  
  // minimal decompostion for each ring
  nbFactesPerRingMin = 512;
  
  nbDecomp = ceil(nbFactesPerRingMin / size(theta, '*'));
  
endfunction


function drawGrayplot(theta, rh, z)
// draw only the colored part of the grayplot

// the aim of the function is to draw a set of curved facets
// In previous versions, it used arcs to perform this.
// However, since arcs are drawn from the origin to the outside
// there were overlapping and cause Z fighting in 3D.
// Consequenlty we now decompose each curved facet into a set of rectangular
// facets.

nbRho = size(rho,'*');
nbTheta = size(theta,'*');

nbDecomposition = computeNeededDecompos(theta); // number of approximation facets

nbRefinedTheta = (nbTheta - 1) * nbDecomposition + 1;

// first step decompose theta in smaller intervals
// Actually compute cosTheta and sinTheta for speed
cosTheta = zeros(1, nbRefinedTheta);
sinTheta = zeros(1, nbRefinedTheta);

// first values
cosTheta(1) = cos(theta(1));
sinTheta(1) = sin(theta(1));

index = 2;
for i=1:(nbTheta - 1)
  for j=1:nbDecomposition
    t = j / nbDecomposition;
    interpolatedTheta = t * theta(i + 1) + (1 - t) * theta(i);
    cosTheta(index) = cos(interpolatedTheta);
    sinTheta(index) = sin(interpolatedTheta);
    index = index + 1;
  end
end


nbQuadFacets = (nbRho - 1) * (nbRefinedTheta - 1);

// allocate matrices
xCoords = zeros(4, nbQuadFacets);
yCoords = zeros(4, nbQuadFacets);
colors = zeros(4, nbQuadFacets);

index = 1;

// compute the 4xnbFacets matrices for plot 3d
for i=1:(nbRho - 1)
  for j=1:(nbRefinedTheta - 1);
    // get the 4 corners of a facet
    xCoords(:,index) = [rho(i) * cosTheta(j)
                        rho(i) * cosTheta(j + 1)
                        rho(i + 1) * cosTheta(j + 1)
                        rho(i + 1) * cosTheta(j)];

    yCoords(:,index) = [rho(i) * sinTheta(j)
                        rho(i) * sinTheta(j + 1)
                        rho(i + 1) * sinTheta(j + 1)
                        rho(i + 1) * sinTheta(j)];

    // color is the same for each nbDecomposition facets
	// retrieve the not refined index
	thetaIndex = (j - 1) / nbDecomposition + 1;
	// keep the 4 outside colors of the patch
	// to be able to switch between average or matlab color.
    colors(:,index) = [z(thetaIndex, i)
	                   z(thetaIndex + 1, i)
					   z(thetaIndex + 1, i + 1)
					   z(thetaIndex, i + 1)];

    index = index + 1;
  end
end


// flat plot
zCoords = zeros(4, nbQuadFacets);

// disable line draing and hidden color
plot3d(xCoords,yCoords,list(zCoords,colors));
gPlot = gce();
gPlot.color_mode = -1; // no wireframe
gPlot.hiddencolor = 0; // no hidden color
gPlot.color_flag = 2; // average color on each facets

// restore 2d view
axes = gca();
axes.view = "2d";


endfunction