1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008 - INRIA
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
-->
<refentry version="5.0-subset Scilab" xml:id="fit_dat" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns4="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:db="http://docbook.org/ns/docbook">
<info>
<pubdate>$LastChangedDate$</pubdate>
</info>
<refnamediv>
<refname>fit_dat</refname>
<refpurpose>Parameter identification based on measured data</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>[p,err]=fit_dat(G,p0,Z [,W] [,pmin,pmax] [,DG])</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>G</term>
<listitem>
<para>Scilab function (e=G(p,z), e: nex1, p: npx1, z: nzx1)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>p0</term>
<listitem>
<para>initial guess (size npx1)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Z</term>
<listitem>
<para>matrix [z_1,z_2,...z_n] where z_i (nzx1) is the ith
measurement</para>
</listitem>
</varlistentry>
<varlistentry>
<term>W</term>
<listitem>
<para>weighting matrix of size nexne (optional; default 1)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>pmin</term>
<listitem>
<para>lower bound on p (optional; size npx1)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>pmax</term>
<listitem>
<para>upper bound on p (optional; size npx1)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>DG</term>
<listitem>
<para>partial of G wrt p (optional; S=DG(p,z), S: nexnp)</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para><literal>fit_dat</literal> is used for fitting data to a model. For
a given function G(p,z), this function finds the best vector of parameters
p for approximating G(p,z_i)=0 for a set of measurement vectors z_i.
Vector p is found by minimizing
<literal>G(p,z_1)'WG(p,z_1)+G(p,z_2)'WG(p,z_2)+...+G(p,z_n)'WG(p,z_n)</literal></para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
deff('y=FF(x)','y=a*(x-b)+c*x.*x')
X=[];Y=[];
a=34;b=12;c=14;for x=0:.1:3, Y=[Y,FF(x)+100*(rand()-.5)];X=[X,x];end
Z=[Y;X];
deff('e=G(p,z)','a=p(1),b=p(2),c=p(3),y=z(1),x=z(2),e=y-FF(x)')
[p,err]=fit_dat(G,[3;5;10],Z)
xset('window',0)
clf();
plot2d(X',Y',-1)
plot2d(X',FF(X)',5,'002')
a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
a=34;b=12;c=14;
deff('s=DG(p,z)','y=z(1),x=z(2),s=-[x-p(2),-p(1),x*x]')
[p,err]=fit_dat(G,[3;5;10],Z,DG)
xset('window',1)
clf();
plot2d(X',Y',-1)
plot2d(X',FF(X)',5,'002')
a=p(1),b=p(2),c=p(3);plot2d(X',FF(X)',12,'002')
]]></programlisting>
</refsection>
<refsection>
<title>See Also</title>
<simplelist type="inline">
<member><link linkend="optim">optim</link></member>
<member><link linkend="datafit">datafit</link></member>
</simplelist>
</refsection>
</refentry>
|