1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008 - INRIA
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
-->
<refentry version="5.0-subset Scilab" xml:id="lmisolver" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns4="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:db="http://docbook.org/ns/docbook">
<info>
<pubdate>$LastChangedDate$</pubdate>
</info>
<refnamediv>
<refname>lmisolver</refname>
<refpurpose>linear matrix inequation solver</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>[XLISTF[,OPT]] = lmisolver(XLIST0,evalfunc [,options])</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>XLIST0</term>
<listitem>
<para>a list of containing initial guess (e.g.
<literal>XLIST0=list(X1,X2,..,Xn)</literal>)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>evalfunc</term>
<listitem>
<para>a Scilab function ("external" function with specific
syntax)</para>
<para>The syntax the function <literal>evalfunc</literal> must be as
follows:</para>
<para><literal>[LME,LMI,OBJ]=evalfunct(X)</literal> where
<literal>X</literal> is a list of matrices, <literal>LME,
LMI</literal> are lists and <literal>OBJ</literal> a real
scalar.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>XLISTF</term>
<listitem>
<para>a list of matrices (e.g.
<literal>XLIST0=list(X1,X2,..,Xn)</literal>)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>options</term>
<listitem>
<para>optional parameter. If given, <literal>options</literal> is a
real row vector with 5 components
<literal>[Mbound,abstol,nu,maxiters,reltol]</literal></para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para><literal>lmisolver</literal> solves the following problem:</para>
<para>minimize <literal>f(X1,X2,...,Xn)</literal> a linear function of
Xi's</para>
<para>under the linear constraints: <literal>Gi(X1,X2,...,Xn)=0</literal>
for i=1,...,p and LMI (linear matrix inequalities) constraints:</para>
<para><literal>Hj(X1,X2,...,Xn) > 0</literal> for j=1,...,q</para>
<para>The functions f, G, H are coded in the Scilab function
<literal>evalfunc</literal> and the set of matrices Xi's in the list X
(i.e. <literal>X=list(X1,...,Xn)</literal>).</para>
<para>The function <literal>evalfun</literal> must return in the list
<literal>LME</literal> the matrices <literal>G1(X),...,Gp(X)</literal>
(i.e. <literal>LME(i)=Gi(X1,...,Xn),</literal> i=1,...,p).
<literal>evalfun</literal> must return in the list <literal>LMI</literal>
the matrices <literal>H1(X0),...,Hq(X)</literal> (i.e.
<literal>LMI(j)=Hj(X1,...,Xn)</literal>, j=1,...,q).
<literal>evalfun</literal> must return in <literal>OBJ</literal> the value
of <literal>f(X)</literal> (i.e.
<literal>OBJ=f(X1,...,Xn)</literal>).</para>
<para><literal>lmisolver</literal> returns in <literal>XLISTF</literal>, a
list of real matrices, i. e. <literal>XLIST=list(X1,X2,..,Xn)</literal>
where the Xi's solve the LMI problem:</para>
<para>Defining <literal>Y,Z</literal> and <literal>cost</literal>
by:</para>
<para><literal>[Y,Z,cost]=evalfunc(XLIST)</literal>, <literal>Y</literal>
is a list of zero matrices, <literal>Y=list(Y1,...,Yp)</literal>,
<literal>Y1=0, Y2=0, ..., Yp=0</literal>.</para>
<para><literal> Z</literal> is a list of square symmetric matrices,
<literal> Z=list(Z1,...,Zq) </literal>, which are semi positive definite
<literal> Z1>0, Z2>0, ..., Zq>0</literal> (i.e.
<literal>spec(Z(j))</literal> > 0),</para>
<para><literal>cost</literal> is minimized.</para>
<para><literal>lmisolver</literal> can also solve LMI problems in which
the <literal>Xi's</literal> are not matrices but lists of matrices. More
details are given in the documentation of LMITOOL.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find diagonal matrix X (i.e. X=diag(diag(X), p=1) such that
//A1'*X+X*A1+Q1 < 0, A2'*X+X*A2+Q2 < 0 (q=2) and trace(X) is maximized
n = 2;
A1 = rand(n,n);
A2 = rand(n,n);
Xs = diag(1:n);
Q1 = -(A1'*Xs+Xs*A1+0.1*eye());
Q2 = -(A2'*Xs+Xs*A2+0.2*eye());
deff('[LME,LMI,OBJ]=evalf(Xlist)','X = Xlist(1); ...
LME = X-diag(diag(X));...
LMI = list(-(A1''*X+X*A1+Q1),-(A2''*X+X*A2+Q2)); ...
OBJ = -sum(diag(X)) ');
X=lmisolver(list(zeros(A1)),evalf);
X=X(1)
[Y,Z,c]=evalf(X)
]]></programlisting>
</refsection>
<refsection>
<title>See Also</title>
<simplelist type="inline">
<member><link linkend="lmitool">lmitool</link></member>
</simplelist>
</refsection>
</refentry>
|