File: lmisolver.xml

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (169 lines) | stat: -rw-r--r-- 5,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
<?xml version="1.0" encoding="UTF-8"?>
<!--
 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 * Copyright (C) 2008 - INRIA
 * 
 * This file must be used under the terms of the CeCILL.
 * This source file is licensed as described in the file COPYING, which
 * you should have received as part of this distribution.  The terms
 * are also available at    
 * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
 *
 -->
<refentry version="5.0-subset Scilab" xml:id="lmisolver" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns4="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:db="http://docbook.org/ns/docbook">
  <info>
    <pubdate>$LastChangedDate$</pubdate>
  </info>

  <refnamediv>
    <refname>lmisolver</refname>

    <refpurpose>linear matrix inequation solver</refpurpose>
  </refnamediv>

  <refsynopsisdiv>
    <title>Calling Sequence</title>

    <synopsis>[XLISTF[,OPT]] = lmisolver(XLIST0,evalfunc [,options])</synopsis>
  </refsynopsisdiv>

  <refsection>
    <title>Parameters</title>

    <variablelist>
      <varlistentry>
        <term>XLIST0</term>

        <listitem>
          <para>a list of containing initial guess (e.g.
          <literal>XLIST0=list(X1,X2,..,Xn)</literal>)</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>evalfunc</term>

        <listitem>
          <para>a Scilab function ("external" function with specific
          syntax)</para>

          <para>The syntax the function <literal>evalfunc</literal> must be as
          follows:</para>

          <para><literal>[LME,LMI,OBJ]=evalfunct(X)</literal> where
          <literal>X</literal> is a list of matrices, <literal>LME,
          LMI</literal> are lists and <literal>OBJ</literal> a real
          scalar.</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>XLISTF</term>

        <listitem>
          <para>a list of matrices (e.g.
          <literal>XLIST0=list(X1,X2,..,Xn)</literal>)</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>options</term>

        <listitem>
          <para>optional parameter. If given, <literal>options</literal> is a
          real row vector with 5 components
          <literal>[Mbound,abstol,nu,maxiters,reltol]</literal></para>
        </listitem>
      </varlistentry>
    </variablelist>
  </refsection>

  <refsection>
    <title>Description</title>

    <para><literal>lmisolver</literal> solves the following problem:</para>

    <para>minimize <literal>f(X1,X2,...,Xn)</literal> a linear function of
    Xi's</para>

    <para>under the linear constraints: <literal>Gi(X1,X2,...,Xn)=0</literal>
    for i=1,...,p and LMI (linear matrix inequalities) constraints:</para>

    <para><literal>Hj(X1,X2,...,Xn) &gt; 0</literal> for j=1,...,q</para>

    <para>The functions f, G, H are coded in the Scilab function
    <literal>evalfunc</literal> and the set of matrices Xi's in the list X
    (i.e. <literal>X=list(X1,...,Xn)</literal>).</para>

    <para>The function <literal>evalfun</literal> must return in the list
    <literal>LME</literal> the matrices <literal>G1(X),...,Gp(X)</literal>
    (i.e. <literal>LME(i)=Gi(X1,...,Xn),</literal> i=1,...,p).
    <literal>evalfun</literal> must return in the list <literal>LMI</literal>
    the matrices <literal>H1(X0),...,Hq(X)</literal> (i.e.
    <literal>LMI(j)=Hj(X1,...,Xn)</literal>, j=1,...,q).
    <literal>evalfun</literal> must return in <literal>OBJ</literal> the value
    of <literal>f(X)</literal> (i.e.
    <literal>OBJ=f(X1,...,Xn)</literal>).</para>

    <para><literal>lmisolver</literal> returns in <literal>XLISTF</literal>, a
    list of real matrices, i. e. <literal>XLIST=list(X1,X2,..,Xn)</literal>
    where the Xi's solve the LMI problem:</para>

    <para>Defining <literal>Y,Z</literal> and <literal>cost</literal>
    by:</para>

    <para><literal>[Y,Z,cost]=evalfunc(XLIST)</literal>, <literal>Y</literal>
    is a list of zero matrices, <literal>Y=list(Y1,...,Yp)</literal>,
    <literal>Y1=0, Y2=0, ..., Yp=0</literal>.</para>

    <para><literal> Z</literal> is a list of square symmetric matrices,
    <literal> Z=list(Z1,...,Zq) </literal>, which are semi positive definite
    <literal> Z1&gt;0, Z2&gt;0, ..., Zq&gt;0</literal> (i.e.
    <literal>spec(Z(j))</literal> &gt; 0),</para>

    <para><literal>cost</literal> is minimized.</para>

    <para><literal>lmisolver</literal> can also solve LMI problems in which
    the <literal>Xi's</literal> are not matrices but lists of matrices. More
    details are given in the documentation of LMITOOL.</para>
  </refsection>

  <refsection>
    <title>Examples</title>

    <programlisting role="example"><![CDATA[ 
//Find diagonal matrix X (i.e. X=diag(diag(X), p=1) such that
//A1'*X+X*A1+Q1 < 0, A2'*X+X*A2+Q2 < 0 (q=2) and trace(X) is maximized 
n  = 2;
A1 = rand(n,n);
A2 = rand(n,n);
Xs = diag(1:n);
Q1 = -(A1'*Xs+Xs*A1+0.1*eye());
Q2 = -(A2'*Xs+Xs*A2+0.2*eye());

deff('[LME,LMI,OBJ]=evalf(Xlist)','X   = Xlist(1); ...
                                   LME = X-diag(diag(X));...
                                   LMI = list(-(A1''*X+X*A1+Q1),-(A2''*X+X*A2+Q2)); ...
                                   OBJ = -sum(diag(X))  ');

X=lmisolver(list(zeros(A1)),evalf);

X=X(1)
[Y,Z,c]=evalf(X)
 ]]></programlisting>
  </refsection>

  <refsection>
    <title>See Also</title>

    <simplelist type="inline">
      <member><link linkend="lmitool">lmitool</link></member>
    </simplelist>
  </refsection>
</refentry>