1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008 - INRIA
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
-->
<refentry version="5.0-subset Scilab" xml:id="numdiff" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns5="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:db="http://docbook.org/ns/docbook">
<info>
<pubdate>$LastChangedDate$</pubdate>
</info>
<refnamediv>
<refname>numdiff</refname>
<refpurpose>numerical gradient estimation</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>g=numdiff(fun,x [,dx])</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>fun</term>
<listitem>
<para>an external, Scilab function or list. See below for calling
sequence, see also <link linkend="external">external</link> for
details about external functions.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>x</term>
<listitem>
<para>vector, the argument of the function
<literal>fun</literal></para>
</listitem>
</varlistentry>
<varlistentry>
<term>dx</term>
<listitem>
<para>vector, the finite difference step. Default value is
<literal>dx=sqrt(%eps)*(1+1d-3*abs(x))</literal></para>
</listitem>
</varlistentry>
<varlistentry>
<term>g</term>
<listitem>
<para>vector, the estimated gradient</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para>given a function <literal>fun(x)</literal> from
<literal>R^n</literal> to <literal>R^p</literal> computes the matrix
<literal>g</literal> such as</para>
<programlisting role = ""><![CDATA[
g(i,j) = (df_i)/(dx_j)
]]></programlisting>
<para>using finite difference methods.</para>
<para>
Without parameters, the function fun calling sequence is
<literal>y=fun(x)</literal>, and numdiff can be called as
<literal>g=numdiff(fun,x)</literal>. Else the function fun calling
sequence must be <literal>y=fun(x,param_1,pararm_2,..,param_q)</literal>.
If parameters <literal>param_1,param_2,..param_q</literal> exist then
<literal>numdiff</literal> can be called as follow
<literal>g=numdiff(list(fun,param_1,param_2,..param_q),x)</literal>.
</para>
<para>
See the
<link linkend="derivative">derivative</link> with respect to numerical accuracy
issues and comparison between the two algorithms.
</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
// example 1 (without parameters)
// myfun is a function from R^2 to R : (x(1),x(2)) |--> myfun(x)
function f=myfun(x)
f=x(1)*x(1)+x(1)*x(2)
endfunction
x=[5 8]
g=numdiff(myfun,x)
// The exact gradient (i.e derivate belong x(1) :first component and derivate belong x(2): second component) is
exact=[2*x(1)+x(2) x(1)]
//example 2 (with parameters)
// myfun is a function from R to R: x(1) |--> myfun(x)
// myfun contains 3 parameters, a, b, c
function f=myfun(x,a,b,c)
f=(x+a)^c+b
endfunction
a=3; b=4; c=2;
x=1
g2=numdiff(list(myfun,a,b,c),x)
// The exact gradient, i.e derivate belong x(1), is :
exact2=c*(x+a)^(c-1)
]]></programlisting>
</refsection>
<refsection>
<title>See Also</title>
<simplelist type="inline">
<member><link linkend="optim">optim</link></member>
<member><link linkend="derivative">derivative</link></member>
<member><link linkend="external">external</link></member>
</simplelist>
</refsection>
</refentry>
|