1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!--
* Ajouter ici d'éventuels commentaires sur le fichier XML
-->
<refentry version="5.0-subset Scilab" xml:id="optimbase" xml:lang="fr"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns4="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:db="http://docbook.org/ns/docbook">
<info>
<pubdate>$LastChangedDate: 16-12-2008 $</pubdate>
</info>
<refnamediv>
<refname>optimbase</refname>
<refpurpose>Provides an abstract class for a general optimization
component.</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>SYNOPSIS</title>
<synopsis>
newobj = optimbase_new ()
this = optimbase_destroy (this)
this = optimbase_configure (this,key,value)
value = optimbase_cget (this,key)
value = optimbase_get (this,key)
this = optimbase_set ( this , key , value )
[ this , isok ] = optimbase_checkbounds ( this )
[ opt , isok ] = optimbase_checkx0 ( this )
this = optimbase_display ( this )
[ this , f , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )
[ this , f , c , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )
[ this , f , g , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )
[ this , f , g , c , gc , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )
[ this , hasbounds ] = optimbase_hasbounds ( this )
[ this , hascons ] = optimbase_hasconstraints ( this )
[ this , hasnlcons ] = optimbase_hasnlcons ( this )
value = optimbase_histget ( this , iter , key )
this = optimbase_histset ( this , iter , key , value )
this = optimbase_incriter ( this )
[ this , isfeasible ] = optimbase_isfeasible ( this , x )
this = optimbase_log (this,msg)
optimbase_outputcmd ( this , state , data )
data = optimbase_outstruct ( this )
[ this , p ] = optimbase_proj2bnds ( this , x )
this = optimbase_stoplog ( this , msg )
[this , terminate , status] = optimbase_terminate (this , previousfopt , currentfopt , previousxopt , currentxopt )
this = optimbase_checkcostfun ( this )
[ this , isfeasible ] = optimbase_isinbounds ( this , x )
[ this , isfeasible ] = optimbase_isinnonlinconst ( this , x )
</synopsis>
</refsynopsisdiv>
<refsection>
<title>Purpose</title>
<para>The goal of this component is to provide a building block for
optimization methods. The goal is to provide a building block for a large
class of specialized optimization methods. This component manages</para>
<itemizedlist>
<listitem>
<para>the number of variables,</para>
</listitem>
<listitem>
<para>the minimum and maximum bounds,</para>
</listitem>
<listitem>
<para>the number of non linear inequality constraints,</para>
</listitem>
<listitem>
<para>the cost function,</para>
</listitem>
<listitem>
<para>the logging system,</para>
</listitem>
<listitem>
<para>various termination criteria,</para>
</listitem>
<listitem>
<para>etc...</para>
</listitem>
</itemizedlist>
</refsection>
<refsection>
<title>Design</title>
<para>This toolbox is designed with Oriented Object ideas in mind.</para>
</refsection>
<refsection>
<title>Features</title>
<para>The following is a list of features the Optimbase toolbox currently
provides :</para>
<itemizedlist>
<listitem>
<para>Manage cost function</para>
<itemizedlist>
<listitem>
<para>optionnal additionnal argument</para>
</listitem>
<listitem>
<para>direct communication of the task to perform : cost function
or inequality constraints</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Manage various termination criteria, including</para>
<itemizedlist>
<listitem>
<para>maximum number of iterations,</para>
</listitem>
<listitem>
<para>tolerance on function value (relative or absolute),</para>
</listitem>
<listitem>
<para>tolerance on x (relative or absolute),</para>
</listitem>
<listitem>
<para>maximum number of evaluations of cost function,</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Manage the history of the convergence, including</para>
<itemizedlist>
<listitem>
<para>history of function values,</para>
</listitem>
<listitem>
<para>history of optimum point.</para>
</listitem>
</itemizedlist>
</listitem>
<listitem>
<para>Provide query features for</para>
<itemizedlist>
<listitem>
<para>the status of the optimization process,</para>
</listitem>
<listitem>
<para>the number of iterations,</para>
</listitem>
<listitem>
<para>the number of function evaluations,</para>
</listitem>
<listitem>
<para>function value at initial point,</para>
</listitem>
<listitem>
<para>function value at optimal point,</para>
</listitem>
<listitem>
<para>the optimum parameters,</para>
</listitem>
<listitem>
<para>etc...</para>
</listitem>
</itemizedlist>
</listitem>
</itemizedlist>
</refsection>
<refsection>
<title>Description</title>
<para>This set of commands allows to manage an abstract optimization
method. The goal is to provide a building block for a large class of
specialized optimization methods. This component manages the number of
variables, the minimum and maximum bounds, the number of non linear
inequality constraints, the logging system, various termination criteria,
the cost function, etc...</para>
<para>The optimization problem to solve is the following</para>
<programlisting role="example">
min f(x)
l_i <= x_i <= h_i, i = 1,n
g_i(x) <= 0, i = 1,nbineq
</programlisting>
<para>where</para>
<variablelist>
<varlistentry>
<term>n</term>
<listitem>
<para>number of variables</para>
</listitem>
</varlistentry>
<varlistentry>
<term>nbineq</term>
<listitem>
<para>number of inequality constraints</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Functions</title>
<para>The following functions are available.</para>
<variablelist>
<varlistentry>
<term>newobj = optimbase_new ()</term>
<listitem>
<para>Creates a new optimization object.</para>
<variablelist>
<varlistentry>
<term>newobj</term>
<listitem>
<para>The new object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_destroy (this)</term>
<listitem>
<para>Destroy the given object.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_configure (this,key,value)</term>
<listitem>
<para>Configure the current object with the given value for the
given key.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>key</term>
<listitem>
<para>the key to configure. The following keys are
available.</para>
<variablelist>
<varlistentry>
<term>-verbose</term>
<listitem>
<para>set to 1 to enable verbose logging. (default is
0)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-verbosetermination</term>
<listitem>
<para>set to 1 to enable verbose termination logging.
(default is 0)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-x0</term>
<listitem>
<para>the initial guess.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-maxfunevals</term>
<listitem>
<para>the maximum number of function evalutations
(default is 100). If this criteria is triggered, the
status of the optimization is set to
"maxfuneval".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-maxiter</term>
<listitem>
<para>the maximum number of iterations (default is 100).
If this criteria is triggered, the status of the
optimization is set to "maxiter".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-tolfunabsolute</term>
<listitem>
<para>the absolute tolerance for the function value
(default is 0.0).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-tolfunrelative</term>
<listitem>
<para>the relative tolerance for the function value
(default is %eps).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-tolfunmethod</term>
<listitem>
<para>the method used for the tolerance on function
value in the termination criteria.</para>
<para>The following values are available : %t, %f
(default is %f). If this criteria is triggered, the
status of the optimization is set to "tolf".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-tolxabsolute</term>
<listitem>
<para>the absolute tolerance on x (default is
0.0).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-tolxrelative</term>
<listitem>
<para>the relative tolerance on x (default is
%eps).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-tolxmethod</term>
<listitem>
<para>the method used for the tolerance on x in the
termination criteria.</para>
<para>The following values are available : %t, %f
(default is %t). If this criteria is triggered, the
status of the optimization is set to "tolx".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-function</term>
<listitem>
<para>the objective function, which computes the value
of the cost and the non linear constraints, if
any.</para>
<para>See below for the details of the communication
between the optimization system and the cost
function.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-costfargument</term>
<listitem>
<para>an additionnal argument, passed to the cost
function.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-outputcommand</term>
<listitem>
<para>a command which is called back for output.</para>
<para>See below for the details of the communication
between the optimization system and the output command
function.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-outputcommandarg</term>
<listitem>
<para>an additionnal argument, passed to the output
command.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-numberofvariables</term>
<listitem>
<para>the number of variables to optimize (default is
0).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-storehistory</term>
<listitem>
<para>set to %t to enable the history storing (default
is %f).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-boundsmin</term>
<listitem>
<para>the minimum bounds for the parameters, as an array
of values (default is empty, i.e. there are no
bounds).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-boundsmax</term>
<listitem>
<para>the maximum bounds for the parameters, as an array
of values (default is empty, i.e. there are no
bounds).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-nbineqconst</term>
<listitem>
<para>the number of inequality constraints (default is
0)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-logfile</term>
<listitem>
<para>the name of the log file</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-withderivatives</term>
<listitem>
<para>set to %t if the algorithm uses derivatives.
Default is %f.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>value</term>
<listitem>
<para>the value.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>value = optimbase_cget (this,key)</term>
<listitem>
<para>Get the value for the given key. If the key is unknown,
generates an error.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>key</term>
<listitem>
<para>the name of the key to quiery. The list of available
keys is the same as for the optimbase_configure
function.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , isok ] = optimbase_checkbounds ( this )</term>
<listitem>
<para>Check if the bounds are consistent and puts an error message
if not. One could generate an error, but errors are not testable
with the current system.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ opt , isok ] = optimbase_checkx0 ( this )</term>
<listitem>
<para>Returns %T if the initial guess is consistent with the bounds
and the non linear inequality constraints, if any.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_display ( this )</term>
<listitem>
<para>Display the current settings in the console.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , f , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )</term>
<term>[ this , f , c , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )</term>
<term>[ this , f , g , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )</term>
<term>[ this , f , g , c , gc , index [ , data ] ] = optimbase_function ( this , x , index [ , data ] )</term>
<listitem>
<para>Call the cost function and return the required results.</para>
<para>If a cost function additionnal argument is defined in current
object, pass it to the function as the last argument. See below for
details.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>x</term>
<listitem>
<para>the current point, as a column vector</para>
</listitem>
</varlistentry>
<varlistentry>
<term>index</term>
<listitem>
<para>what value to compute.</para>
<para>See below in the section "Cost function" for details on
this index.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>f</term>
<listitem>
<para>the value of the cost function</para>
</listitem>
</varlistentry>
<varlistentry>
<term>g</term>
<listitem>
<para>the gradient of the cost function</para>
</listitem>
</varlistentry>
<varlistentry>
<term>c</term>
<listitem>
<para>the nonlinear, positive, inequality constraints</para>
</listitem>
</varlistentry>
<varlistentry>
<term>gc</term>
<listitem>
<para>the gradient of the nonlinear, positive, inequality constraints</para>
</listitem>
</varlistentry>
<varlistentry>
<term>data</term>
<listitem>
<para>an optionnal user-provided argument</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_set ( this , key , value )</term>
<listitem>
<para>Set the value for the given key. If the key is unknown,
generates an error.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>key</term>
<listitem>
<para>the key to set</para>
<para>The following keys are available :</para>
<variablelist>
<varlistentry>
<term>-funevals</term>
<listitem>
<para>the number of function evaluations</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-iterations</term>
<listitem>
<para>the number of iterations</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-xopt</term>
<listitem>
<para>the x optimum</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-fopt</term>
<listitem>
<para>the optimum cost function value</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-historyxopt</term>
<listitem>
<para>an array, with nbiter values, containing the
history of x during the iterations.</para>
<para>This array is available after optimization if the
history storing was enabled with the -storehistory
option.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-historyfopt</term>
<listitem>
<para>an array, with nbiter values, containing the
history of the function value during the
iterations.</para>
<para>This array is available after optimization if the
history storing was enabled with the -storehistory
option.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-fx0</term>
<listitem>
<para>the function value for the initial guess</para>
</listitem>
</varlistentry>
<varlistentry>
<term>-status</term>
<listitem>
<para>a string containing the status of the
optimization</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>value</term>
<listitem>
<para>the value to set</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>value = optimbase_get (this,key)</term>
<listitem>
<para>Get the value for the given key. If the key is unknown,
generates an error. This command corresponds with options which are
not available directly to the optimbase_configure function, but are
computed internally.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>key</term>
<listitem>
<para>the name of the key to quiery.</para>
<para>The list of available keys is the same as the
optimbase_set function.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , hasbounds ] = optimbase_hasbounds ( this )</term>
<listitem>
<para>Returns %T if current problem has bounds.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , hascons ] = optimbase_hasconstraints ( this )</term>
<listitem>
<para>Returns %T if current problem has bounds constraints, linear
constraints or non linear constraints.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , hasnlcons ] = optimbase_hasnlcons ( this )</term>
<listitem>
<para>Returns %T if current problem has non linear
constraints.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_histset ( this , iter , key , value )</term>
<listitem>
<para>Set the history value at given iteration for the given key. If
the key is unknown, generates an error.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>iter</term>
<listitem>
<para>the iteration number to get</para>
</listitem>
</varlistentry>
<varlistentry>
<term>key</term>
<listitem>
<para>the name of the key to quiery.</para>
<para>The list of available keys is the following : "-xopt",
"-fopt".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>value</term>
<listitem>
<para>the value to set</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>value = optimbase_histget ( this , iter , key )</term>
<listitem>
<para>Returns the history value at the given iteration number for
the given key. If the key is unknown, generates an error.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>iter</term>
<listitem>
<para>the iteration number to get</para>
</listitem>
</varlistentry>
<varlistentry>
<term>key</term>
<listitem>
<para>the name of the key to quiery.</para>
<para>The list of available keys is the same as the
optimbase_histset function.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_incriter ( this )</term>
<listitem>
<para>Increments the number of iterations.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , isfeasible ] = optimbase_isfeasible ( this , x )</term>
<listitem>
<para>Returns 1 if the given point satisfies bounds constraints and
inequality constraints. Returns 0 if the given point is not in the
bounds. Returns -1 if the given point does not satisfies inequality
constraints.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>x</term>
<listitem>
<para>the current point</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_log (this,msg)</term>
<listitem>
<para>If verbose logging is enabled, prints the given message in the
console. If verbose logging is disabled, does nothing. If the
-lofgile option has been set, writes the message into the file
instead of writing to the console. If the console is too slow,
writing into a file can be a solution, since it is very fast.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>msg</term>
<listitem>
<para>the message to print</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>optimbase_outputcmd ( this , state , data )</term>
<listitem>
<para>Calls back user's output command.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>data = optimbase_outstruct ( this )</term>
<listitem>
<para>Returns a tlist with basic optimization fields. This tlist is
suitable for use as an input argument of the output function. This
tlist may be enriched by children (specialize) optimization
methods.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , p ] = optimbase_proj2bnds ( this , x )</term>
<listitem>
<para>Returns a point, which is the projection of the given point
into the bounds.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>x</term>
<listitem>
<para>the current point</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_stoplog ( this , msg )</term>
<listitem>
<para>Prints the given stopping rule message if verbose termination
is enabled. If verbose termination is disabled, does nothing.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>msg</term>
<listitem>
<para>the message to print</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[this , terminate , status] = optimbase_terminate (this ,
previousfopt , currentfopt , previousxopt , currentxopt )</term>
<listitem>
<para>Returns 1 if the algorithm terminates. Returns 0 if the
algorithm must continue. If the -verbosetermination option is
enabled, messages are printed detailing the termination intermediate
steps. The optimbase_terminate function takes into account the
number of iterations, the number of evaluations of the cost
function, the tolerance on x and the tolerance on f. See below in
the section "Termination" for more details.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>previousfopt</term>
<listitem>
<para>the previous value of the cost function</para>
</listitem>
</varlistentry>
<varlistentry>
<term>currentfopt</term>
<listitem>
<para>the current value of the cost function</para>
</listitem>
</varlistentry>
<varlistentry>
<term>previousxopt</term>
<listitem>
<para>the previous x optimum</para>
</listitem>
</varlistentry>
<varlistentry>
<term>currentxopt</term>
<listitem>
<para>the current x optimum</para>
</listitem>
</varlistentry>
<varlistentry>
<term>terminate</term>
<listitem>
<para>%t if the algorithm must terminate, %f if the algorithm
must continue</para>
</listitem>
</varlistentry>
<varlistentry>
<term>status</term>
<listitem>
<para>if terminate = %t, the detailed status of the
termination, as a string. If terminate = %f, the status is
"continue".</para>
<para>The following status are available :</para>
<variablelist>
<varlistentry>
<term>"maxiter"</term>
<listitem>
<para>the maximum number of iterations, provided by the
-maxiter option, is reached.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>"maxfuneval"</term>
<listitem>
<para>the maximum number of function evaluations,
provided by the -maxfunevals option, is reached</para>
</listitem>
</varlistentry>
<varlistentry>
<term>"tolf"</term>
<listitem>
<para>the tolerance on the function value is reached.
This status is associated with the -tolfunmethod,
-tolfunabsolute and -tolfunrelative options.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>"tolx"</term>
<listitem>
<para>the tolerance on x is reached. This status is
associated with the -tolxmethod, -tolxabsolute and
-tolxrelative options.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>this = optimbase_checkcostfun ( this )</term>
<listitem>
<para>Check that the cost function is correctly connected. Generate
an error if there is one. Takes into account for the cost function
at the initial guess x0 only. Checks that all values of the index
argument are valid. If there are nonlinear constraints, check that
the matrix has the correct shape.</para>
<para>This function requires at least one call to the cost function
to make the necessary checks.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , isfeasible ] = optimbase_isinbounds ( this , x )</term>
<listitem>
<para>Returns isfeasible = %t if the given point satisfies bounds
constraints. Returns isfeasible = %f if the given point is not in
the bounds.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>isfeasible</term>
<listitem>
<para>a boolean</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>[ this , isfeasible ] = optimbase_isinnonlinconst ( this , x
)</term>
<listitem>
<para>Returns isfeasible = %t if the given point satisfies the
nonlinear constraints. Returns isfeasible = %f if the given point
does not satisfy the nonlinear constraints.</para>
<variablelist>
<varlistentry>
<term>this</term>
<listitem>
<para>The current object.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>isfeasible</term>
<listitem>
<para>a boolean</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>The cost function</title>
<para>The <literal>-function</literal> option allows to configure the cost function. The cost
function is used, depending on the context, to compute the cost, the
nonlinear inequality positive constraints, the gradient of the function
and the gradient of the nonlinear inequality constraints.</para>
<para>The cost function can also be used to produce outputs and to
terminate an optimization algorithm.</para>
<para>In the following, the variables are </para>
<itemizedlist>
<listitem>
<para><literal>f</literal>: scalar, the objective,</para>
</listitem>
<listitem>
<para><literal>g</literal>: row matrix, the gradient of the objective,</para>
</listitem>
<listitem>
<para><literal>c</literal>: row matrix, the constraints,</para>
</listitem>
<listitem>
<para><literal>gc</literal>: matrix, the gradient of the constraints.</para>
</listitem>
</itemizedlist>
<para>Each calling sequence of the <literal>optimbase_function</literal>
function corresponds to a specific calling sequence of the user-provided
cost function.</para>
<itemizedlist>
<listitem>
<para>If the -withderivatives is false and there is no nonlinear
constraint, the calling sequence is </para>
<programlisting role="example"><![CDATA[
[ this , f , index ] = optimbase_function ( this , x , index )
]]></programlisting>
<para>which corresponds to the cost functions</para>
<programlisting role="example"><![CDATA[
function [ f , index ] = costf ( x , index )
function [ f , index , data ] = costf ( x , index , data ) // if there is a -costfargument
]]></programlisting>
</listitem>
<listitem>
<para>If the -withderivatives is false and there are nonlinear
constraints, the calling sequence is </para>
<programlisting role="example"><![CDATA[
[ this , f , c , index ] = optimbase_function ( this , x , index )
]]></programlisting>
<para>which corresponds to the cost functions</para>
<programlisting role="example"><![CDATA[
function [ f , c , index ] = costf ( x , index )
function [ f , c , index , data ] = costf ( x , index , data ) // if there is a -costfargument
]]></programlisting>
</listitem>
<listitem>
<para>If the -withderivatives is true and there is no nonlinear
constraint, the calling sequence is</para>
<programlisting role="example"><![CDATA[
[ this , f , g , index ] = optimbase_function ( this , x , index )
]]></programlisting>
<para>which corresponds to the cost functions</para>
<programlisting role="example"><![CDATA[
function [ f , g , index ] = costf ( x , index )
function [ f , g , index , data ] = costf ( x , index , data ) // if there is a -costfargument
]]></programlisting>
</listitem>
<listitem>
<para>If the -withderivatives is true and there is are nonlinear
constraints, the calling sequence is</para>
<programlisting role="example"><![CDATA[
[ this , f , g , c , gc , index ] = optimbase_function ( this , x , index )
]]></programlisting>
<para>which corresponds to the cost functions</para>
<programlisting role="example"><![CDATA[
function [ f , g , c , gc , index ] = costf ( x , index )
function [ f , g , c , gc , index , data ] = costf ( x , index , data ) // if there is a -costfargument
]]></programlisting>
</listitem>
</itemizedlist>
<para>Each calling sequence corresponds to a particular class of
algorithms, including for example</para>
<itemizedlist>
<listitem>
<para>unconstrained, derivative-free algorithms,</para>
</listitem>
<listitem>
<para>nonlinearily constrained, derivative-free algorithms,</para>
</listitem>
<listitem>
<para>unconstrained, derivative-based algorithms,</para>
</listitem>
<listitem>
<para>nonlinearilyconstrained, derivative-based algorithms,</para>
</listitem>
<listitem>
<para>etc...</para>
</listitem>
</itemizedlist>
<para> The current component is designed in order to be able to
handle many situations.</para>
<para>The index input parameter has the following meaning.</para>
<itemizedlist>
<listitem>
<para>index = 1: nothing is to be computed, the user may display
messages, for example</para>
</listitem>
<listitem>
<para>index = 2: compute f</para>
</listitem>
<listitem>
<para>index = 3: compute g</para>
</listitem>
<listitem>
<para>index = 4: compute f and g</para>
</listitem>
<listitem>
<para>index = 5: compute c</para>
</listitem>
<listitem>
<para>index = 6: compute f and c</para>
</listitem>
<listitem>
<para>index = 7: compute f, g, c and gc</para>
</listitem>
</itemizedlist>
<para>The index output parameter has the following meaning.</para>
<itemizedlist>
<listitem>
<para>index > 0: everything is fine,</para>
</listitem>
<listitem>
<para>index = 0: the optimization must stop,</para>
</listitem>
<listitem>
<para>index < 0: one function could not be avaluated.</para>
</listitem>
</itemizedlist>
</refsection>
<refsection>
<title>The output function</title>
<para>The option -outputcommand allows to configure a command which is
called back at the start of the optimization, at each iteration and at the
end of the optimization.</para>
<para>The output function must have the following header</para>
<programlisting role="example">
function outputcmd(state, data, myobj)
</programlisting>
<para>where</para>
<variablelist>
<varlistentry>
<term>state</term>
<listitem>
<para>a string representing the current state of the algorithm.
Available values are "init", "iter", "done".</para>
</listitem>
</varlistentry>
<varlistentry>
<term>data</term>
<listitem>
<para>a tlist containing at least the following entries</para>
<variablelist>
<varlistentry>
<term>x</term>
<listitem>
<para>the current optimum</para>
</listitem>
</varlistentry>
<varlistentry>
<term>fval</term>
<listitem>
<para>the current function value</para>
</listitem>
</varlistentry>
<varlistentry>
<term>iteration</term>
<listitem>
<para>the current iteration index</para>
</listitem>
</varlistentry>
<varlistentry>
<term>funccount</term>
<listitem>
<para>the number of function evaluations</para>
</listitem>
</varlistentry>
</variablelist>
</listitem>
</varlistentry>
<varlistentry>
<term>myobj</term>
<listitem>
<para>a user-defined parameter.</para>
<para>This input parameter is defined with the -outputcommandarg
option.</para>
</listitem>
</varlistentry>
</variablelist>
<para>The output function may be used when debugging the specialized
optimization algorithm, so that a verbose logging is produced. It may also
be used to write one or several report files in a specialized format
(ASCII, LaTeX, Excel, Hdf5, etc...). The user-defined parameter may be
used in that case to store file names or logging options.</para>
<para>The data tlist argument may contain more fields than the current
presented ones. These additionnal fields may contain values which are
specific to the specialized algorithm, such as the simplex in a
Nelder-Mead method, the gradient of the cost function in a BFGS method,
etc...</para>
</refsection>
<refsection>
<title>Termination</title>
<para>The current component takes into account for several generic
termination criterias. Specialized termination criterias should be
implemented in specialized optimization algorithms, by calling the
optimbase_termination function and adding external criterias, rather than
by modification of this function.</para>
<para>The optimbase_terminate function uses a set of rules to compute if
the termination occurs, which leads to an optimization status which is
equal to one of the following : "continue", "maxiter", "maxfunevals",
"tolf", "tolx". The set of rules is the following.</para>
<itemizedlist>
<listitem>
<para>By default, the status is "continue" and the terminate flag is
0.</para>
</listitem>
<listitem>
<para>The number of iterations is examined and compared to the
-maxiter option : if the following condition</para>
<programlisting role="example">
iterations >= maxiter
</programlisting>
<para>is true, then the status is set to "maxiter" and terminate is
set to %t.</para>
</listitem>
<listitem>
<para>The number of function evaluations and compared to the
-maxfunevals option is examined : if the following condition</para>
<programlisting role="example">
funevals >= maxfunevals
</programlisting>
<para>is true, then the status is set to "maxfuneval" and terminate is
set to %t.</para>
</listitem>
<listitem>
<para>The tolerance on function value is examined depending on the
value of the -tolfunmethod.</para>
<variablelist>
<varlistentry>
<term>"disabled"</term>
<listitem>
<para>then the tolerance on f is just skipped.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>"enabled"</term>
<listitem>
<para>if the following condition</para>
<programlisting role="example">
abs(currentfopt) < tolfunrelative * abs(previousfopt) + tolfunabsolute
</programlisting>
<para>is true, then the status is set to "tolf" and terminate is
set to %t.</para>
</listitem>
</varlistentry>
</variablelist>
<para>The relative termination criteria on the function value works
well if the function value at optimum is near zero. In that case, the
function value at initial guess fx0 may be used as
previousfopt.</para>
<para>The absolute termination criteria on the function value works if
the user has an accurate idea of the optimum function value.</para>
</listitem>
<listitem>
<para>The tolerance on x is examined depending on the value of the
-tolxmethod.</para>
<variablelist>
<varlistentry>
<term>%f</term>
<listitem>
<para>then the tolerance on x is just skipped.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>%t</term>
<listitem>
<para>if the following condition</para>
<programlisting role="example">
norm(currentxopt - previousxopt) < tolxrelative * norm(currentxopt) + tolxabsolute
</programlisting>
<para>is true, then the status is set to "tolx" and terminate is
set to %t.</para>
</listitem>
</varlistentry>
</variablelist>
<para>The relative termination criteria on x works well if x at
optimum is different from zero. In that case, the condition measures
the distance between two iterates.</para>
<para>The absolute termination criteria on x works if the user has an
accurate idea of the scale of the optimum x. If the optimum x is near
0, the relative tolerance will not work and the absolute tolerance is
more appropriate.</para>
</listitem>
</itemizedlist>
</refsection>
<refsection>
<title>Example : Setting up an optimization</title>
<para>In the following example, one searches the minimum of the 2D
Rosenbrock function. One begins by defining the function "rosenbrock"
which computes the Rosenbrock function. The traditionnal initial guess
[-1.2 1.0] is used. The initial simplex is computed along the axes with a
length equal to 0.1. The Nelder-Mead algorithm with variable simplex size
is used. The verbose mode is enabled so that messages are generated during
the algorithm. After the optimization is performed, the optimum is
retrieved with quiery features.</para>
<programlisting role="example">
function [ f , index ] = rosenbrock ( x , index )
f = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
endfunction
opt = optimbase_new();
opt = optimbase_configure(opt,"-numberofvariables",2);
nbvar = optimbase_cget(opt,"-numberofvariables");
opt = optimbase_configure(opt,"-function",rosenbrock);
[ this , f , index ] = optimbase_function ( opt , [0.0 0.0] , index );
opt = optimbase_destroy(opt);
</programlisting>
</refsection>
<refsection>
<title>Authors</title>
<para>Michael Baudin, 2008-2009</para>
</refsection>
<refsection>
<title>TODO</title>
<itemizedlist>
<listitem>
<para>manage equality constraints</para>
</listitem>
<listitem>
<para>manage linear constraints</para>
</listitem>
<listitem>
<para>manage quadratic objective</para>
</listitem>
<listitem>
<para>manage linear objective</para>
</listitem>
<listitem>
<para>manage linear inequality constraints</para>
</listitem>
<listitem>
<para>manage non linear equality constraints</para>
</listitem>
<listitem>
<para>manage linear equality constraints</para>
</listitem>
<listitem>
<para>rename -outputcommand to -outputfunction</para>
</listitem>
</itemizedlist>
</refsection>
</refentry>
|