1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
<?xml version="1.0" encoding="UTF-8"?>
<refentry version="5.0-subset Scilab" xml:id="qpsolve" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns3="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:db="http://docbook.org/ns/docbook">
<info>
<pubdate>March 2008</pubdate>
</info>
<refnamediv>
<refname>qpsolve</refname>
<refpurpose>linear quadratic programming solver</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>[x [,iact [,iter [,f]]]]=qpsolve(Q,p,C,b,ci,cs,me)</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>Q</term>
<listitem>
<para>real positive definite symmetric matrix (dimension <literal>n
x n</literal>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>p</term>
<listitem>
<para>real (column) vector (dimension <literal> n</literal>)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>C</term>
<listitem>
<para>real matrix (dimension <literal> (me + md) x n</literal>).
This matrix may be dense or sparse.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>b</term>
<listitem>
<para>RHS column vector (dimension <literal> m=(me +
md)</literal>)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>ci</term>
<listitem>
<para>column vector of lower-bounds (dimension
<literal>n</literal>). If there are no lower bound constraints, put
<literal>ci = []</literal>. If some components of
<literal>x</literal> are bounded from below, set the other
(unconstrained) values of <literal>ci</literal> to a very large
negative number (e.g. <literal>ci(j) =
-number_properties('huge')</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>cs</term>
<listitem>
<para>column vector of upper-bounds. (Same remarks as above).</para>
</listitem>
</varlistentry>
<varlistentry>
<term>me</term>
<listitem>
<para>number of equality constraints (i.e. <literal>C(1:me,:)*x =
b(1:me)</literal>)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>x</term>
<listitem>
<para>optimal solution found.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>iact</term>
<listitem>
<para>vector, indicator of active constraints. The first non zero
entries give the index of the active constraints</para>
</listitem>
</varlistentry>
<varlistentry>
<term>iter</term>
<listitem>
<para>. 2x1 vector, first component gives the number of "main"
iterations, the second one says how many constraints were deleted
after they became active.</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<informalequation>
<mediaobject>
<imageobject>
<imagedata align="center" fileref="../mml/qld_equation_1.mml" />
</imageobject>
</mediaobject>
</informalequation>
<para>This function requires <literal>Q</literal> to be symmetric positive
definite. If that hypothesis is not satisfied, one may use the quapro
function, which is provided in the Scilab quapro toolbox.</para>
<para>The qpsolve solver is implemented as a Scilab script, which calls
the compiled qp_solve primitive. It is provided as a facility, in order to
be a direct replacement for the former quapro solver : indeed, the qpsolve
solver has been designed so that it provides the same interface, that is,
the same input/output arguments. But the x0 and imp input arguments are
available in quapro, but not in qpsolve.</para>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
//Find x in R^6 such that:
//C1*x = b1 (3 equality constraints i.e me=3)
C1= [1,-1,1,0,3,1;
-1,0,-3,-4,5,6;
2,5,3,0,1,0];
b1=[1;2;3];
//C2*x <= b2 (2 inequality constraints)
C2=[0,1,0,1,2,-1;
-1,0,2,1,1,0];
b2=[-1;2.5];
//with x between ci and cs:
ci=[-1000;-10000;0;-1000;-1000;-1000];
cs=[10000;100;1.5;100;100;1000];
//and minimize 0.5*x'*Q*x + p'*x with
p=[1;2;3;4;5;6]; Q=eye(6,6);
//No initial point is given;
C=[C1;C2];
b=[b1;b2];
me=3;
[x,iact,iter,f]=qpsolve(Q,p,C,b,ci,cs,me)
//Only linear constraints (1 to 4) are active
]]></programlisting>
</refsection>
<refsection>
<title>See Also</title>
<simplelist type="inline">
<member><link linkend="optim">optim</link></member>
<member><link linkend="qp_solve">qp_solve</link></member>
<member><link linkend="qld">qld</link></member>
</simplelist>
<para>The contributed toolbox "quapro" may also be of interest, in
particular for singular <literal>Q</literal>.</para>
</refsection>
<refsection>
<title>Memory requirements</title>
<para>Let r be</para>
<programlisting role = ""><![CDATA[
r=min(m,n)
]]></programlisting>
<para>Then the memory required by qpsolve during the computations
is</para>
<programlisting role =""><![CDATA[
2*n+r*(r+5)/2 + 2*m +1
]]></programlisting>
</refsection>
<refsection>
<title>Authors</title>
<variablelist>
<varlistentry>
<term>S. Steer</term>
<listitem>
<para>INRIA (Scilab interface)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Berwin A. Turlach</term>
<listitem>
<para>School of Mathematics and Statistics (M019), The University of
Western Australia, Crawley, AUSTRALIA (solver code)</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>References</title>
<itemizedlist>
<listitem>
<para>Goldfarb, D. and Idnani, A. (1982). "Dual and Primal-Dual
Methods for Solving Strictly Convex Quadratic Programs", in J.P.
Hennart (ed.), Numerical Analysis, Proceedings, Cocoyoc, Mexico 1981,
Vol. 909 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, pp.
226-239.</para>
</listitem>
<listitem>
<para>Goldfarb, D. and Idnani, A. (1983). "A numerically stable dual
method for solving strictly convex quadratic programs", Mathematical
Programming 27: 1-33.</para>
</listitem>
<listitem>
<para>QuadProg (Quadratic Programming Routines), Berwin A
Turlach,<ulink
url="http://www.maths.uwa.edu.au/~berwin/software/quadprog.html">http://www.maths.uwa.edu.au/~berwin/software/quadprog.html</ulink></para>
</listitem>
</itemizedlist>
</refsection>
<refsection>
<title>Used Functions</title>
<para>qpgen1.f (also named QP.solve.f) developped by Berwin A. Turlach
according to the Goldfarb/Idnani algorithm</para>
</refsection>
</refentry>
|