1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
|
<?xml version="1.0" encoding="UTF-8"?>
<!--
* Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
* Copyright (C) 2008 - INRIA
*
* This file must be used under the terms of the CeCILL.
* This source file is licensed as described in the file COPYING, which
* you should have received as part of this distribution. The terms
* are also available at
* http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
*
-->
<refentry version="5.0-subset Scilab" xml:id="semidef" xml:lang="en"
xmlns="http://docbook.org/ns/docbook"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns:ns4="http://www.w3.org/1999/xhtml"
xmlns:mml="http://www.w3.org/1998/Math/MathML"
xmlns:db="http://docbook.org/ns/docbook">
<info>
<pubdate>$LastChangedDate: 2008-03-26 09:50:39 +0100 (mer, 26 mar 2008)
$</pubdate>
</info>
<refnamediv>
<refname>semidef</refname>
<refpurpose>semidefinite programming</refpurpose>
</refnamediv>
<refsynopsisdiv>
<title>Calling Sequence</title>
<synopsis>[x,Z,ul,info]=semidef(x0,Z0,F,blck_szs,c,options)</synopsis>
</refsynopsisdiv>
<refsection>
<title>Parameters</title>
<variablelist>
<varlistentry>
<term>x0</term>
<listitem>
<para>m x 1 real column vector (must be strictly primal feasible,
see below)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Z0</term>
<listitem>
<para>L x 1 real vector (compressed form of a strictly feasible dual
matrix, see below)</para>
</listitem>
</varlistentry>
<varlistentry>
<term>F</term>
<listitem>
<para>L x (m+1) real matrix</para>
</listitem>
</varlistentry>
<varlistentry>
<term>blck_szs</term>
<listitem>
<para>p x 2 integer matrix (sizes of the blocks) defining the
dimensions of the (square) diagonal blocks
<literal>size(Fi(j)=blck_szs(j) j=1,...,m+1</literal>.</para>
</listitem>
</varlistentry>
<varlistentry>
<term>c</term>
<listitem>
<para>m x 1 real vector</para>
</listitem>
</varlistentry>
<varlistentry>
<term>options</term>
<listitem>
<para>row vector with five entries
<literal>[nu,abstol,reltol,0,maxiters]</literal></para>
</listitem>
</varlistentry>
<varlistentry>
<term>ul</term>
<listitem>
<para>row vector with two entries</para>
</listitem>
</varlistentry>
</variablelist>
</refsection>
<refsection>
<title>Description</title>
<para><literal>[x,Z,ul,info]=semidef(x0,Z0,F,blck_szs,c,options)</literal>
solves semidefinite program:</para>
<informalequation>
<mediaobject>
<imageobject>
<imagedata align="center" fileref="../mml/semidef_equation_1.mml" />
</imageobject>
</mediaobject>
</informalequation>
<para>and its dual:</para>
<informalequation>
<mediaobject>
<imageobject>
<imagedata align="center" fileref="../mml/semidef_equation_2.mml" />
</imageobject>
</mediaobject>
</informalequation>
<para>exploiting block structure in the matrices
<literal>F_i</literal>.</para>
<para>It interfaces L. Vandenberghe and S. Boyd sp.c program.</para>
<para>The <literal>Fi's</literal> matrices are stored columnwise in
<literal>F</literal> in compressed format: if <literal>F_i^j</literal>,
i=0,..,m, j=1,...,L denote the jth (symmetric) diagonal block of
<literal>F_i</literal>, then</para>
<informalequation>
<mediaobject>
<imageobject>
<imagedata align="center" fileref="../mml/semidef_equation_3.mml" />
</imageobject>
</mediaobject>
</informalequation>
<para>where <literal>pack(M)</literal>, for symmetric
<literal>M</literal>, is the vector
<literal>[M(1,1);M(1,2);...;M(1,n);M(2,2);M(2,3);...;M(2,n);...;M(n,n)]</literal>
(obtained by scanning columnwise the lower triangular part of
<literal>M</literal>).</para>
<para><literal>blck_szs</literal> gives the size of block
<literal>j</literal>, ie,
<literal>size(F_i^j)=blck_szs(j)</literal>.</para>
<para>Z is a block diagonal matrix with L blocks <literal>Z^0, ...,
Z^{L-1}</literal>. <literal>Z^j</literal> has size <literal>blck_szs[j]
times blck_szs[j]</literal>. Every block is stored using packed storage of
the lower triangular part.</para>
<para>The 2 vector <literal>ul</literal> contains the primal objective
value <literal>c'*x</literal> and the dual objective value
<literal>-trace(F_0*Z</literal>).</para>
<para>The entries of <literal>options</literal> are respectively:
<literal>nu</literal> = a real parameter which ntrols the rate of
convergence. <literal>abstol</literal> = absolute tolerance.
<literal>reltol</literal> = relative tolerance (has a special meaning when
negative). <literal>tv</literal> target value, only referenced if
<literal>reltol < 0</literal>. <literal>iters</literal> = on entry:
maximum number of iterations >= 0, on exit: the number of iterations
taken. Notice that the absolute tolerance cannot be lower than 1.0e-8,
that is, the absolute tolerance used in the algorithm is the maximum of
the user-defined tolerance and the constant tolerance 1.0e-8.</para>
<para><literal>info</literal> returns 1 if maxiters exceeded, 2 if
absolute accuracy is reached, 3 if relative accuracy is reached, 4 if
target value is reached, 5 if target value is not achievable; negative
values indicate errors.</para>
<para>Convergence criterion:</para>
<programlisting role = ""><![CDATA[
(1) maxiters is exceeded
(2) duality gap is less than abstol
(3) primal and dual objective are both positive and
duality gap is less than (reltol * dual objective)
or primal and dual objective are both negative and
duality gap is less than (reltol * minus the primal objective)
(4) reltol is negative and
primal objective is less than tv or dual objective is greater
than tv
]]></programlisting>
</refsection>
<refsection>
<title>Examples</title>
<programlisting role="example"><![CDATA[
F0=[2,1,0,0;
1,2,0,0;
0,0,3,1
0,0,1,3];
F1=[1,2,0,0;
2,1,0,0;
0,0,1,3;
0,0,3,1]
F2=[2,2,0,0;
2,2,0,0;
0,0,3,4;
0,0,4,4];
blck_szs=[2,2];
F01=F0(1:2,1:2);F02=F0(3:4,3:4);
F11=F1(1:2,1:2);F12=F1(3:4,3:4);
F21=F2(1:2,1:2);F22=F2(3:4,3:4);
x0=[0;0]
Z0=2*F0;
Z01=Z0(1:2,1:2);Z02=Z0(3:4,3:4);
FF=[[F01(:);F02(:)],[F11(:);F12(:)],[F21(:);F22(:)]]
ZZ0=[[Z01(:);Z02(:)]];
c=[trace(F1*Z0);trace(F2*Z0)];
options=[10,1.d-10,1.d-10,0,50];
[x,Z,ul,info]=semidef(x0,pack(ZZ0),pack(FF),blck_szs,c,options)
w=vec2list(unpack(Z,blck_szs),[blck_szs;blck_szs]);Z=sysdiag(w(1),w(2))
c'*x+trace(F0*Z)
spec(F0+F1*x(1)+F2*x(2))
trace(F1*Z)-c(1)
trace(F2*Z)-c(2)
]]></programlisting>
</refsection>
<refsection>
<title>References</title>
<para>L. Vandenberghe and S. Boyd, " Semidefinite Programming,"
Informations Systems Laboratory, Stanford University, 1994.</para>
<para>Ju. E. Nesterov and M. J. Todd, "Self-Scaled Cones and
Interior-Point Methods in Nonlinear Programming," Working Paper, CORE,
Catholic University of Louvain, Louvain-la-Neuve, Belgium, April
1994.</para>
<para>SP: Software for Semidefinite Programming, <ulink
url="http://www.ee.ucla.edu/~vandenbe/sp.html">http://www.ee.ucla.edu/~vandenbe/sp.html</ulink></para>
</refsection>
</refentry>
|