File: semidef.xml

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (255 lines) | stat: -rw-r--r-- 7,796 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
<?xml version="1.0" encoding="UTF-8"?>
<!--
 * Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
 * Copyright (C) 2008 - INRIA
 * 
 * This file must be used under the terms of the CeCILL.
 * This source file is licensed as described in the file COPYING, which
 * you should have received as part of this distribution.  The terms
 * are also available at    
 * http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
 *
 -->
<refentry version="5.0-subset Scilab" xml:id="semidef" xml:lang="en"
          xmlns="http://docbook.org/ns/docbook"
          xmlns:xlink="http://www.w3.org/1999/xlink"
          xmlns:svg="http://www.w3.org/2000/svg"
          xmlns:ns4="http://www.w3.org/1999/xhtml"
          xmlns:mml="http://www.w3.org/1998/Math/MathML"
          xmlns:db="http://docbook.org/ns/docbook">
  <info>
    <pubdate>$LastChangedDate: 2008-03-26 09:50:39 +0100 (mer, 26 mar 2008)
    $</pubdate>
  </info>

  <refnamediv>
    <refname>semidef</refname>

    <refpurpose>semidefinite programming</refpurpose>
  </refnamediv>

  <refsynopsisdiv>
    <title>Calling Sequence</title>

    <synopsis>[x,Z,ul,info]=semidef(x0,Z0,F,blck_szs,c,options)</synopsis>
  </refsynopsisdiv>

  <refsection>
    <title>Parameters</title>

    <variablelist>
      <varlistentry>
        <term>x0</term>

        <listitem>
          <para>m x 1 real column vector (must be strictly primal feasible,
          see below)</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>Z0</term>

        <listitem>
          <para>L x 1 real vector (compressed form of a strictly feasible dual
          matrix, see below)</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>F</term>

        <listitem>
          <para>L x (m+1) real matrix</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>blck_szs</term>

        <listitem>
          <para>p x 2 integer matrix (sizes of the blocks) defining the
          dimensions of the (square) diagonal blocks
          <literal>size(Fi(j)=blck_szs(j) j=1,...,m+1</literal>.</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>c</term>

        <listitem>
          <para>m x 1 real vector</para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>options</term>

        <listitem>
          <para>row vector with five entries
          <literal>[nu,abstol,reltol,0,maxiters]</literal></para>
        </listitem>
      </varlistentry>

      <varlistentry>
        <term>ul</term>

        <listitem>
          <para>row vector with two entries</para>
        </listitem>
      </varlistentry>
    </variablelist>
  </refsection>

  <refsection>
    <title>Description</title>

    <para><literal>[x,Z,ul,info]=semidef(x0,Z0,F,blck_szs,c,options)</literal>
    solves semidefinite program:</para>

    <informalequation>
      <mediaobject>
        <imageobject>
          <imagedata align="center" fileref="../mml/semidef_equation_1.mml" />
        </imageobject>
      </mediaobject>
    </informalequation>

    <para>and its dual:</para>

    <informalequation>
      <mediaobject>
        <imageobject>
          <imagedata align="center" fileref="../mml/semidef_equation_2.mml" />
        </imageobject>
      </mediaobject>
    </informalequation>

    <para>exploiting block structure in the matrices
    <literal>F_i</literal>.</para>

    <para>It interfaces L. Vandenberghe and S. Boyd sp.c program.</para>

    <para>The <literal>Fi's</literal> matrices are stored columnwise in
    <literal>F</literal> in compressed format: if <literal>F_i^j</literal>,
    i=0,..,m, j=1,...,L denote the jth (symmetric) diagonal block of
    <literal>F_i</literal>, then</para>

    <informalequation>
      <mediaobject>
        <imageobject>
          <imagedata align="center" fileref="../mml/semidef_equation_3.mml" />
        </imageobject>
      </mediaobject>
    </informalequation>

    <para>where <literal>pack(M)</literal>, for symmetric
    <literal>M</literal>, is the vector
    <literal>[M(1,1);M(1,2);...;M(1,n);M(2,2);M(2,3);...;M(2,n);...;M(n,n)]</literal>
    (obtained by scanning columnwise the lower triangular part of
    <literal>M</literal>).</para>

    <para><literal>blck_szs</literal> gives the size of block
    <literal>j</literal>, ie,
    <literal>size(F_i^j)=blck_szs(j)</literal>.</para>

    <para>Z is a block diagonal matrix with L blocks <literal>Z^0, ...,
    Z^{L-1}</literal>. <literal>Z^j</literal> has size <literal>blck_szs[j]
    times blck_szs[j]</literal>. Every block is stored using packed storage of
    the lower triangular part.</para>

    <para>The 2 vector <literal>ul</literal> contains the primal objective
    value <literal>c'*x</literal> and the dual objective value
    <literal>-trace(F_0*Z</literal>).</para>

    <para>The entries of <literal>options</literal> are respectively:
    <literal>nu</literal> = a real parameter which ntrols the rate of
    convergence. <literal>abstol</literal> = absolute tolerance.
    <literal>reltol</literal> = relative tolerance (has a special meaning when
    negative). <literal>tv</literal> target value, only referenced if
    <literal>reltol &lt; 0</literal>. <literal>iters</literal> = on entry:
    maximum number of iterations &gt;= 0, on exit: the number of iterations
    taken. Notice that the absolute tolerance cannot be lower than 1.0e-8,
    that is, the absolute tolerance used in the algorithm is the maximum of
    the user-defined tolerance and the constant tolerance 1.0e-8.</para>

    <para><literal>info</literal> returns 1 if maxiters exceeded, 2 if
    absolute accuracy is reached, 3 if relative accuracy is reached, 4 if
    target value is reached, 5 if target value is not achievable; negative
    values indicate errors.</para>

    <para>Convergence criterion:</para>

    <programlisting role = ""><![CDATA[ 
(1) maxiters is exceeded
(2) duality gap is less than abstol
(3) primal and dual objective are both positive and
    duality gap is less than (reltol * dual objective)
    or primal and dual objective are both negative and
    duality gap is less than (reltol * minus the primal objective)
(4) reltol is negative and
    primal objective is less than tv or dual objective is greater
    than tv
 ]]></programlisting>
  </refsection>

  <refsection>
    <title>Examples</title>

    <programlisting role="example"><![CDATA[ 
F0=[2,1,0,0;
    1,2,0,0;
    0,0,3,1
    0,0,1,3];

F1=[1,2,0,0;
    2,1,0,0;
    0,0,1,3;
    0,0,3,1]

F2=[2,2,0,0;
    2,2,0,0;
    0,0,3,4;
    0,0,4,4];

blck_szs=[2,2];

F01=F0(1:2,1:2);F02=F0(3:4,3:4);
F11=F1(1:2,1:2);F12=F1(3:4,3:4);
F21=F2(1:2,1:2);F22=F2(3:4,3:4);

x0=[0;0]
Z0=2*F0;
Z01=Z0(1:2,1:2);Z02=Z0(3:4,3:4);
FF=[[F01(:);F02(:)],[F11(:);F12(:)],[F21(:);F22(:)]]
ZZ0=[[Z01(:);Z02(:)]];

c=[trace(F1*Z0);trace(F2*Z0)];
options=[10,1.d-10,1.d-10,0,50];

[x,Z,ul,info]=semidef(x0,pack(ZZ0),pack(FF),blck_szs,c,options)

w=vec2list(unpack(Z,blck_szs),[blck_szs;blck_szs]);Z=sysdiag(w(1),w(2))

c'*x+trace(F0*Z)
spec(F0+F1*x(1)+F2*x(2))
trace(F1*Z)-c(1)
trace(F2*Z)-c(2)
 ]]></programlisting>
  </refsection>

  <refsection>
    <title>References</title>

    <para>L. Vandenberghe and S. Boyd, " Semidefinite Programming,"
    Informations Systems Laboratory, Stanford University, 1994.</para>

    <para>Ju. E. Nesterov and M. J. Todd, "Self-Scaled Cones and
    Interior-Point Methods in Nonlinear Programming," Working Paper, CORE,
    Catholic University of Louvain, Louvain-la-Neuve, Belgium, April
    1994.</para>

    <para>SP: Software for Semidefinite Programming, <ulink
    url="http://www.ee.ucla.edu/~vandenbe/sp.html">http://www.ee.ucla.edu/~vandenbe/sp.html</ulink></para>
  </refsection>
</refentry>