File: derivative.sci

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (176 lines) | stat: -rw-r--r-- 4,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) Rainer von Seggern
// Copyright (C) Bruno Pincon
// Copyright (C) 2009 - INRIA - Michael Baudin
// 
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at    
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt

//
//  PURPOSE
//     First and second order numerical derivatives of a function  F: R^n --> R^m 
//     by finite differences.
//     J=J(x) is the m x n Jacobian (the gradient for m=1), and H=H(x) the Hessean 
//     of the m components of F at x. The default form of H is a mxn^2 matrix; 
//     in this form the Taylor series of F up to second order terms is given by:  
//    
//        F(x+dx) = F(x) + J(x)*dx + 1/2*H(x)*(dx.*.dx) +... 
//
//  NOTES
//     1/ See derivative.cat for details of the parameters 
//
//     2/ This function uses the 3 "internal" functions (following
//        this one in this file) :
//   
//          %DF_      => used to compute the Hessean by "differentiating
//                       the derivative"
//          %deriv1_  => contains the various finite difference formulae
//          %R_       => to deal with F as this arg may be a scilab
//                       function or a list embedding a function with
//                       its parameters
//
function [J,H] = derivative(F, x, h, order, H_form, Q , verbose )
   [lhs,rhs]=argn();
   if rhs<2 | rhs>6 then
     error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),'derivative',2,6));
   end
   if type(x) ~= 1 then
     error(msprintf(gettext("%s: Wrong type for input argument #%d: N-dimensionnal array expected.\n"),'derivative',2));
   end
   [n,p] = size(x)
   if p ~= 1 then
     error(msprintf(gettext("%s: Wrong size for input argument #%d: A column vector expected.\n"),'derivative',2));
   end
   if ~exists('order','local') then
      order = 2
   elseif (order ~= 1 & order ~= 2 & order ~= 4) then
     error(msprintf(gettext("%s: Order must be 1, 2 or 4.\n"),'derivative'));
   end
    
   if ~exists('H_form','local') then
     H_form = 'default'
   end
   
   if ~exists('Q','local') then 
     Q = eye(n,n);
   else
     if norm(clean(Q*Q'-eye(n,n)))>0 then
     error('Q must be orthogonal');
     end
   end   
   if ~exists('h','local') then
      h_not_given = %t
      // stepsizes for approximation of first derivatives
      select order  
      case 1
        h = sqrt(%eps)
      case 2
        h = %eps^(1/3)
      case 4
        // TODO : check this, i found 1/5 instead !
        h = %eps^(1/4)
      end
   else
       h_not_given = %f	
   end
   
   if ~exists('verbose','local') then
     verbose = 0
   end
   
   if verbose == 1 then
     mprintf("h = %e\n",h)
     mprintf("order = %d\n",order)
     mprintf("H_form = %s\n",H_form)
     mprintf("Q = \n")
     disp(Q);
   end

   J = %deriv1_(F, x, h, order, Q)
   m = size(J,1);
   
   if lhs == 1 then
     return
   end

   if h_not_given then
      // stepsizes for approximation of second derivatives
      select order  
      case 1
        h = %eps^(1/3)
      case 2
        h = %eps^(1/4)
      case 4
        h = %eps^(1/6)
      end
   end
   // H is a mxn^2 block matrix
   H = %deriv1_(%DF_, x, h, order, Q)
   if     H_form == 'default' then
     // H has the old scilab form
     H = matrix(H',n*n,m)'
   end
   if H_form == 'hypermat' then
     if m>1 then
       // H is a hypermatrix if m>1
       H=H'; 
       H=hypermat([n n m],H(:)); 
     end 
   end
   if (H_form ~= 'blockmat')&(H_form ~= 'default')&(H_form ~= 'hypermat') then 
     error('H_form must be ''default'',''blockmat'' or ''hypermat''')
   end
endfunction

function z=%DF_(x)
   // Transpose !
   z = %deriv1_(F, x, h, order, Q)';      
   z = z(:);
endfunction 

function g=%deriv1_(F_, x, h, order, Q)
   n=size(x,'*') 
   Dy=[];
   select order
     case 1
       D = h*Q;
       y=%R_(F_,x);
       for d=D
         Dy=[Dy %R_(F_,x+d)-y]
       end
       g=Dy*Q'/h
     case 2
       D = h*Q;
       for d=D
         Dy=[Dy %R_(F_,x+d)-%R_(F_,x-d)]
       end
       g=Dy*Q'/(2*h)
     case 4
       D = h*Q;
       for d=D
         dFh =  (%R_(F_,x+d)-%R_(F_,x-d))/(2*h)
         dF2h = (%R_(F_,x+2*d)-%R_(F_,x-2*d))/(4*h)
         Dy=[Dy (4*dFh - dF2h)/3]
       end
       g = Dy*Q'
    end
endfunction

function y=%R_(F_,x)  
  if type(F_)==15 then  
    R=F_(1); 
    y=R(x,F_(2:$)); 
    // See extraction, list or tlist case: ...
    // But if the extraction syntax is used within a function
    // input calling sequence each returned list component is
    // added to the function calling sequence.
  elseif  type(F_)==13 | type(F_)==11 then
    y=F_(x);
  else
    error(msprintf(gettext("%s: Wrong type for input argument #%d: A function expected.\n"),'%%R_',1));
  end
endfunction