File: lmisolver.sci

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (453 lines) | stat: -rw-r--r-- 12,990 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
// 
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at    
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
function [%Xlist,%OPT]=lmisolver(%Xinit,%evalfunc,%options) 
  %OPT=[];%Xlist=list();
  [LHS,RHS]=argn(0);

  if RHS==2 then 
    %Mb = 1e3;%ato = 1e-10;%nu = 10;%mite = 100;%rto = 1e-10;
  else
    %Mb=%options(1);%ato=%options(2);%nu=%options(3);%mite=%options(4);%rto=%options(5);
  end

  %to=1e-5
  %tol=1e-10

  [%Xinit,%ind_X]=aplat(%Xinit);

  %dim_X=[]
  for %ia=1:size(%Xinit)
    %dim_X=[%dim_X;size(%Xinit(%ia))]
  end

  %x0=list2vec(%Xinit);
  %nvars=size(%x0,'*')

  //Testing feasibility of initial guess
  [%E,%I,%O]=%evalfunc(vec2list(%x0,%dim_X,%ind_X));
  if size(%O,'*')==0 then //only feasible point is searched
    if lmicheck(aplat(%E),aplat(%I)) then
      %Xlist=vec2list(%x0,%dim_X,%ind_X);
      lmisolvertrace(msprintf(_('%s: initial guess is feasible.'),'lmisolver'));
      // only feasibility claimed and given initial value is feasible, so
      // there in nothoting to do!
      return; 
    end
  end
    
 
  //Construction of canonical representation:
  //A first transformation is applied to form explicit linear equations: 
  // LMIs Hj(X1,X2,...,XN) > 0  gives I0 + I1*x1+...+In*xn >0
  // LMEs Gi(X1,X2,...,XN)=0    gives E0 + E1*x1+...+En*xn =0
  // Obj   O(X1,X2,...,XN)      gives O0 + O1*x1+...+On*xn
  // where Fi, Ci are matrices and fi scalars this is done using the
  // cannonical basis for the vector space of {X1,X2,...,XN}. The xi i=1..n are
  // the unknown components for this cannonical basis
 
  // A second transformation I0v=I0(:); Iiv=Fi(:) ;
  //                         E0v=V0(:); Eiv=Ei(:) ;
  // allows to rewrite the LMIs as I0v+I*X, the LMEs as E0v+E*X; 
  // and the Objective as O0+O*X
  // where 
  // X is a column vector of all undknowns
  // I=[I1v, ..., Inv]
  // E=[E1v, ..., Env]
  // O=[O1, ...,  On]
  // allows to rewrite
  
  //compute affine parts of LME LMI and OBJ
  [%E0,%I0,%O0]=%evalfunc(vec2list(zeros(%nvars,1),%dim_X,%ind_X));
  
  %E0v=list2vec(aplat(%E0));
  %I0=aplat(%I0);
  %O0v=list2vec(aplat(%O0));
  
  %blck_szs=[];
  for %lmii=%I0
    [%mk,%mk]=size(%lmii);%blck_szs=[%blck_szs,%mk]
  end
  %blck_szs=%blck_szs(find(%blck_szs~=0));
  [%I0v,%dim_I]=list2vec(%I0);


  %E=[];%I=[];%O=[]; 

  lmisolvertrace(msprintf(_('%s: Construction of canonical representation.'),'lmisolver'));
  %spI0=sparse(%I0v); //the sparse representation of F0
  %spE0=sparse(%E0v); //the sparse representation of C0
  %lX=size(%Xinit)
  
  %XZER=%Xinit
  for %ka=1:%lX
    %XZER(%ka)=sparse(0*%Xinit(%ka));
  end
  //construct a generators for LMI, LME and Obj ranges using a cannonical
  //basis for {X1, ..., Xn}
  for  %ja=1:%lX //loop on matrices Xi
    %row=%dim_X(%ja,1)
    %coll=%dim_X(%ja,2)
    for %ca=1:%coll //loop on columns of Xi
      for %ra=1:%row  //loop on rows of Xi
	//set the cannonical basis vector
	%XZER(%ja)(%ra,%ca)=1;
	
	//compute LME LMI and OBJ component for this base vector
	[%Ei,%Ii,%Oi]=%evalfunc(recons(%XZER,%ind_X));
	//transform into sparse column vectors
	%Eiv=splist2vec(%Ei)-%spE0;
	%Iiv=splist2vec(%Ii)-%spI0;
	//assemble the matrices
	%E=[%E,%Eiv];
	%I=[%I,%Iiv];
	%O=[%O,%Oi-%O0];
	
	//reset XZER to zero
	%XZER(%ja)(%ra,%ca)=0;
      end
    end
  end
  clear %spI0 %spE0
  // all the LMIs may be generated by %I*X   + %I0v 
  //     the LMEs may be generated by %E*X  + %E0v
  //     the OBJs may be generated by %O*X + %O0
  // for any column vector X
  


  if size(%E,'*')==0 then
    %kerE=speye(%nvars,%nvars);
  else
    lmisolvertrace(msprintf(_('%s: Basis Construction.'),'lmisolver'));
    //reduce the LMEs: all X solution of %E*X  + %E0v can be written
    //  X=X0+ker(%E)*W
    //where 
    //  X0 is a X such that  %E*X  + %E0v=0
    //and
    //  W is arbitrary (the new unknown)
    
    [%x0,%kerE]=linsolve(%E,%E0v,%x0);
    clear %E
    //now %kerE contains the kernel
  end
 // all the LMIs may then be generated by %I*(X0+ker(%E)*W) + %I0v
 //     the LMEs                       by %E*(X0+ker(%E)*W) + %E0v
 //     the OBJs                       by %O*(X0+ker(%E)*W) + %O0
  %I0v=%I0v+%I*%x0;
  %I=%I*%kerE;
  %O0=%O0+%O*%x0;
  %O=%O*%kerE;
  clear %E
  //with this updated notations
  // all the LMIs may then be generated by %I*W   + %I0v 
  //     the OBJs                       by %O*W + %O0
  // The initial unknown may be  obtained by X=%x0+%kerE*W

  if %blck_szs == [] then
    // is objective constant on LME constraint set, Xinit is feasible 
    if maxi(abs(%O+0)) < %to then
      lmisolvertrace(msprintf(_('%s: Objective constant.'),'lmisolver'));
      %Xlist=vec2list(%x0,%dim_X,%ind_X);
      %Xopt=%O0;
      return
    else
      error(msprintf(_('%s: solution unbounded.'),'lmisolver'));
    end
  end

  [%fm,%m]=size(%I);
  //Testing well-posedness
  if %fm<%m then 
    error(msprintf(_('%s: Ill-posed problem. Number of unknowns (%s) >"+...
		     " number of of constraints (%s)'),'lmisolver',%m,%fm));
  end

  
  //Testing rank deficiency
  if size(%I,'*')<>0 then
 
    [%ptr,%rk]=lufact([%I spzeros(%fm,%fm-%m)]',[%tol,0.001]);
    if %rk<%m then
      [%P,%L,%U,%Q]=luget(%ptr);%L=[];%U=[];%Q=[];
      %P=%P';%P=%P(1:%rk,1:%m)';
      warning(msprintf(_('%s: rank deficient problem'),'lmisolver'));
      ludel(%ptr);
      //Testing to see if linobj is in the range of F_is
      if size(%O,'*') <> 0 then
	[%ptr,%rk2]=lufact([[%I;%O] spzeros(%fm+1,%fm+1-%m)]',[%tol,0.001]);
	ludel(%ptr);
	if %rk<%rk2 then
	  error(msprintf(_('%s: solution unbounded.'),'lmisolver'));
	end
      end
      %O=%O*%P
      %I=%I*%P;
      %kerE=%kerE*%P;
      %m=%rk;
      %P=[];
 
    end
  end

  //Testing to see if solution or the LMI value is unique
  if size(%I,'*')==0 then //the LMI reduces to %I0 >0
    //checking positiveness of  %I0
    if ~lmicheck(list(),vec2list(%I0v,%dim_I))
      error(msprintf(_('%s: not feasible or badly defined problem.'),'lmisolver'));
    else
      %Xlist=vec2list(%x0,%dim_X,%ind_X);
      return; 
    end
  end

  //Testing feasibility of initial guess
  //are LMIs positive?
  [ok,%sm]=lmicheck(list(),vec2list(%I0v,%dim_I))
  
  if ok&size(%O,'*')==0 then
    //LMIs are positive, problem is feasible, return
    %Xlist=vec2list(%x0,%dim_X,%ind_X);
    return; 
  end

  %M=%Mb*norm([%I0v,%I],1)


  if ~(%sm>%to) then
    //given initial point is not feasible. Look for a feasible initial point.
    lmisolvertrace(msprintf(_('%s:     FEASIBILITY PHASE.'),'lmisolver'));

    // mineigI is the smallest eigenvalue of I0
    %mineigI=min(real(flat_block_matrix_eigs(%I0v,%blck_szs)))

    // Id is the identity
    %Id = build_flat_identity(%blck_szs)
    if (%M < %Id'*%I0v+1e-5), 
      error(msprintf(_('%s: Mbound too small.'),'lmisolver')); 
    end;

    // initial x0 
    %x00 = [zeros(%m,1); max(-1.1*%mineigI, 1e-5)];

    //Compute  Z0  the projection of Id on the space Tr Ii*Z = 0

    %Z0=%Id-%I*(%I\%Id);
    if %f then
      //check: trace(Ii*Z0) = 0 <=> %Id'*%Z0= 0 
      %I'*%Z0
    end
    //compute  mineigZ is the smallest eigenvalue of Z0
    %mineigZ=min(real(flat_block_matrix_eigs(%Z0,%blck_szs)));
    %ka=sum(%blck_szs.^2);
    %Z0(%ka+1) = max( -1.1 *%mineigZ, 1e-5 );  // z  
    %Z0(1:%ka) = %Z0(1:%ka) + %Z0(%ka+1)*%Id; 
    %Z0 = %Z0 / (%Id'*%Z0(1:%ka));    // make Tr Z0 = 1

    if %f then //for checking semidef
      Z=sysdiag(matrix(%Z0(1:16),4,-1),%Z0(17))
      F0=full(sysdiag(matrix(%I0v,4,-1), %M-%Id'*%I0v));
      for i=1:10,
	Fi=full(sysdiag(matrix(%I(:,i),4,-1),-%Id'*%I(:,i)));
	mprintf('i=%d %e\n',i,abs(trace(Fi*Z)-%c(i)));
      end
      F11=sysdiag(matrix(%Id,4,-1),0);
      mprintf('i=%d %e\n',11,abs(trace(F11*Z)-%c(11)))

    end
    
    //Pack Z0 and I
    %Z0=pack(%Z0,[%blck_szs,1]);

    %temp=full(pack([%I0v,        %I,       %Id;
		     %M-%Id'*%I0v, -%Id'*%I, 0   ],[%blck_szs,1]));
    %c=[zeros(%m,1); 1];

    [%xi,%Z0,%ul,%info]=semidef(%x00,%Z0,%temp,[%blck_szs,1],%c,[%nu,%ato,-1,0,%mite]);
    %temp=[];
    %xi=%xi(1:%m);

    select %info(1)
    case 1
      error(msprintf(_('%s: Max. iters. exceeded.'),'lmisolver'))
    case 2 then
      lmisolvertrace(msprintf(_('%s: Absolute accuracy reached.'),'lmisolver'))
    case 3 then
      lmisolvertrace(msprintf(_('%s: Relative accuracy reached.'),'lmisolver'))
    case 4 then
      lmisolvertrace(msprintf(_('%s: Target value reached.'),'lmisolver'))
    case 5 then
      error(msprintf(_('%s: Target value not achievable.'),'lmisolver'))
    else
      warning(msprintf(_('%s: No feasible solution found.'),'lmisolver'))
    end


    if %info(2) == %mite then 
      error(msprintf(_('%s: max number of iterations exceeded.'),'lmisolver'));
    end
    if (%ul(1) > %ato) then 
      error(msprintf(_('%s: No feasible solution exists.'),'lmisolver'));
    end
    //       if (%ul(1) > 0) then %I0v=%I0v+%ato*%Id;end

    lmisolvertrace(msprintf(_('%s: feasible solution found.'),'lmisolver'));

  else

    lmisolvertrace(msprintf(_('%s: Initial guess feasible.'),'lmisolver'));
    %xi=zeros(%m,1);
  end


  if size(%O,'*')<>0 then

    lmisolvertrace(msprintf(_('%s:       OPTIMIZATION PHASE.') ,'lmisolver'));

    %M = max(%M, %Mb*sum(abs([%I0v,%I]*[1; %xi])));  

    // Id is the identity
    %Id = build_flat_identity(%blck_szs)
    // M must be greater than trace(F(x0))   for bigM.sci
    [%ptr,%rkA]=lufact(%I'*%I,[%tol,0.001]);
    %Z0=lusolve(%ptr,full(%I'*%Id-%O'));
    %Z0=%Id-%I*%Z0;
    ludel(%ptr)

    //check: trace(Ii*Z0) = c <=> %I(:,k)'*%Z0= %O(k) (k = 1:m)
    // mineigZ is the smallest eigenvalue of Z0
    %mineigZ=min(real(flat_block_matrix_eigs(%Z0,%blck_szs)))
    %ka=sum(%blck_szs.^2);
    %Z0(%ka+1) = max(1e-5, -1.1*%mineigZ);  
    %Z0(1:%ka) = %Z0(1:%ka) + %Z0(%ka+1)*%Id; 

    if (%M < %Id'*[%I0v,%I]*[1;%xi] + 1e-5), 
      error(msprintf(_('%s: M must be strictly greater than trace of F(x0).'),'lmisolver')); 
    end;

   
    // add scalar block Tr F(x) <= M

    %blck_szs = [%blck_szs,1];
    
    temp=full(pack([%I0v,          %I; 
		    %M-%Id'*%I0v, -%Id'*%I],%blck_szs));
    
    [%xopt,%z,%ul,%info]=semidef(%xi,pack(%Z0,%blck_szs),temp,%blck_szs,full(%O),[%nu,%ato,%rto,0.0,%mite]);
    clear temp
    if %info(2) == %mite then 
      warning(msprintf(_('%s: max number of iterations exceeded, solution may not be optimal'),'lmisolver'));
    end;
    if sum(abs([%I0v,%I]*[1; %xopt])) > 0.9*%M then 
      lmisolvertrace(msprintf(_('%s: may be unbounded below'),'lmisolver'));
    end;
    if %xopt<>[]&~(%info(2) == %mite) then 
      lmisolvertrace(msprintf(_('%s: optimal solution found'),'lmisolver'));
    else %xopt=%xi;
    end
  else
    %xopt=%xi;
  end

  %Xlist=vec2list((%x0+%kerE*%xopt),%dim_X,%ind_X);
  %OPT=%O0+%O*%xopt;
endfunction


function [bigVector]=splist2vec(li)
//li=list(X1,...Xk) is a list of matrices
//bigVector: sparse vector [X1(:);...;Xk(:)] (stacking of matrices in li)
  bigVector=[];
  li=aplat(li)
  for mati=li
    sm=size(mati);
    bigVector=[bigVector;sparse(matrix(mati,prod(sm),1))];
  end

endfunction

function [A,b]=spaff2Ab(lme,dimX,D,ind)
//Y,X,D are lists of matrices. 
//Y=lme(X,D)= affine fct of Xi's; 
//[A,b]=matrix representation of lme in canonical basis.
  [LHS,RHS]=argn(0)
  select RHS
  case 3 then
    nvars=0;
    for k=dimX'
      nvars=nvars+prod(k);
    end
    x0=zeros(nvars,1);
    b=list2vec(lme(vec2list(x0,dimX),D));
    A=[];
    for k=1:nvars
      xi=x0;xi(k)=1;
      A=[A,sparse(list2vec(lme(vec2list(xi,dimX),D))-b)];
    end

  case 4 then
    nvars=0;
    for k=dimX'
      nvars=nvars+prod(k);
    end
    x0=zeros(nvars,1);
    b=list2vec(lme(vec2list(x0,dimX,ind),D));
    A=[];
    for k=1:nvars
      xi=x0;xi(k)=1;
      A=[A,sparse(list2vec(lme(vec2list(xi,dimX,ind),D))-b)];
    end
  end
endfunction

function lmisolvertrace(txt)
  mprintf("%s\n",txt)
endfunction


function [ok,%sm,%nor]=lmicheck(E,I)

  //checking positiveness of the LMI
  %sm=100;
  for %w=I
    if %w~=[] then 
      s=mini(real(spec(%w)))
      %sm=min(%sm,s)
    end
  end  
  ok=%sm>=-%tol
    
  //Checking norm of the LME
  %nor=0
  for %w=E
    if %w~=[] then 
      n=norm(%w,1)
      %nor=max(%nor,n)
    end
  end     
    
  ok=%sm>=-%tol & %nor<%tol
endfunction
function e=flat_block_matrix_eigs(V,blck_szs)
//  Computes the eigenvalues of each block of a flatten block matrix
    ka=0; e=[];
    for n=matrix(blck_szs,1,-1)
      e=[e;spec(matrix(V(ka+[1:n^2]),n,n))]
      ka=ka+n^2;   
    end;
endfunction

function Id = build_flat_identity(blck_szs)
  //build a flat representation of a block identity matrix
  ka=0; 
  for n=matrix(blck_szs,1,-1)
    Id(ka+[1:n^2]) = matrix(eye(n,n),-1,1);   // identity
    ka=ka+n^2; 
  end;
endfunction