1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) INRIA
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
function [%Xlist,%OPT]=lmisolver(%Xinit,%evalfunc,%options)
%OPT=[];%Xlist=list();
[LHS,RHS]=argn(0);
if RHS==2 then
%Mb = 1e3;%ato = 1e-10;%nu = 10;%mite = 100;%rto = 1e-10;
else
%Mb=%options(1);%ato=%options(2);%nu=%options(3);%mite=%options(4);%rto=%options(5);
end
%to=1e-5
%tol=1e-10
[%Xinit,%ind_X]=aplat(%Xinit);
%dim_X=[]
for %ia=1:size(%Xinit)
%dim_X=[%dim_X;size(%Xinit(%ia))]
end
%x0=list2vec(%Xinit);
%nvars=size(%x0,'*')
//Testing feasibility of initial guess
[%E,%I,%O]=%evalfunc(vec2list(%x0,%dim_X,%ind_X));
if size(%O,'*')==0 then //only feasible point is searched
if lmicheck(aplat(%E),aplat(%I)) then
%Xlist=vec2list(%x0,%dim_X,%ind_X);
lmisolvertrace(msprintf(_('%s: initial guess is feasible.'),'lmisolver'));
// only feasibility claimed and given initial value is feasible, so
// there in nothoting to do!
return;
end
end
//Construction of canonical representation:
//A first transformation is applied to form explicit linear equations:
// LMIs Hj(X1,X2,...,XN) > 0 gives I0 + I1*x1+...+In*xn >0
// LMEs Gi(X1,X2,...,XN)=0 gives E0 + E1*x1+...+En*xn =0
// Obj O(X1,X2,...,XN) gives O0 + O1*x1+...+On*xn
// where Fi, Ci are matrices and fi scalars this is done using the
// cannonical basis for the vector space of {X1,X2,...,XN}. The xi i=1..n are
// the unknown components for this cannonical basis
// A second transformation I0v=I0(:); Iiv=Fi(:) ;
// E0v=V0(:); Eiv=Ei(:) ;
// allows to rewrite the LMIs as I0v+I*X, the LMEs as E0v+E*X;
// and the Objective as O0+O*X
// where
// X is a column vector of all undknowns
// I=[I1v, ..., Inv]
// E=[E1v, ..., Env]
// O=[O1, ..., On]
// allows to rewrite
//compute affine parts of LME LMI and OBJ
[%E0,%I0,%O0]=%evalfunc(vec2list(zeros(%nvars,1),%dim_X,%ind_X));
%E0v=list2vec(aplat(%E0));
%I0=aplat(%I0);
%O0v=list2vec(aplat(%O0));
%blck_szs=[];
for %lmii=%I0
[%mk,%mk]=size(%lmii);%blck_szs=[%blck_szs,%mk]
end
%blck_szs=%blck_szs(find(%blck_szs~=0));
[%I0v,%dim_I]=list2vec(%I0);
%E=[];%I=[];%O=[];
lmisolvertrace(msprintf(_('%s: Construction of canonical representation.'),'lmisolver'));
%spI0=sparse(%I0v); //the sparse representation of F0
%spE0=sparse(%E0v); //the sparse representation of C0
%lX=size(%Xinit)
%XZER=%Xinit
for %ka=1:%lX
%XZER(%ka)=sparse(0*%Xinit(%ka));
end
//construct a generators for LMI, LME and Obj ranges using a cannonical
//basis for {X1, ..., Xn}
for %ja=1:%lX //loop on matrices Xi
%row=%dim_X(%ja,1)
%coll=%dim_X(%ja,2)
for %ca=1:%coll //loop on columns of Xi
for %ra=1:%row //loop on rows of Xi
//set the cannonical basis vector
%XZER(%ja)(%ra,%ca)=1;
//compute LME LMI and OBJ component for this base vector
[%Ei,%Ii,%Oi]=%evalfunc(recons(%XZER,%ind_X));
//transform into sparse column vectors
%Eiv=splist2vec(%Ei)-%spE0;
%Iiv=splist2vec(%Ii)-%spI0;
//assemble the matrices
%E=[%E,%Eiv];
%I=[%I,%Iiv];
%O=[%O,%Oi-%O0];
//reset XZER to zero
%XZER(%ja)(%ra,%ca)=0;
end
end
end
clear %spI0 %spE0
// all the LMIs may be generated by %I*X + %I0v
// the LMEs may be generated by %E*X + %E0v
// the OBJs may be generated by %O*X + %O0
// for any column vector X
if size(%E,'*')==0 then
%kerE=speye(%nvars,%nvars);
else
lmisolvertrace(msprintf(_('%s: Basis Construction.'),'lmisolver'));
//reduce the LMEs: all X solution of %E*X + %E0v can be written
// X=X0+ker(%E)*W
//where
// X0 is a X such that %E*X + %E0v=0
//and
// W is arbitrary (the new unknown)
[%x0,%kerE]=linsolve(%E,%E0v,%x0);
clear %E
//now %kerE contains the kernel
end
// all the LMIs may then be generated by %I*(X0+ker(%E)*W) + %I0v
// the LMEs by %E*(X0+ker(%E)*W) + %E0v
// the OBJs by %O*(X0+ker(%E)*W) + %O0
%I0v=%I0v+%I*%x0;
%I=%I*%kerE;
%O0=%O0+%O*%x0;
%O=%O*%kerE;
clear %E
//with this updated notations
// all the LMIs may then be generated by %I*W + %I0v
// the OBJs by %O*W + %O0
// The initial unknown may be obtained by X=%x0+%kerE*W
if %blck_szs == [] then
// is objective constant on LME constraint set, Xinit is feasible
if maxi(abs(%O+0)) < %to then
lmisolvertrace(msprintf(_('%s: Objective constant.'),'lmisolver'));
%Xlist=vec2list(%x0,%dim_X,%ind_X);
%Xopt=%O0;
return
else
error(msprintf(_('%s: solution unbounded.'),'lmisolver'));
end
end
[%fm,%m]=size(%I);
//Testing well-posedness
if %fm<%m then
error(msprintf(_('%s: Ill-posed problem. Number of unknowns (%s) >"+...
" number of of constraints (%s)'),'lmisolver',%m,%fm));
end
//Testing rank deficiency
if size(%I,'*')<>0 then
[%ptr,%rk]=lufact([%I spzeros(%fm,%fm-%m)]',[%tol,0.001]);
if %rk<%m then
[%P,%L,%U,%Q]=luget(%ptr);%L=[];%U=[];%Q=[];
%P=%P';%P=%P(1:%rk,1:%m)';
warning(msprintf(_('%s: rank deficient problem'),'lmisolver'));
ludel(%ptr);
//Testing to see if linobj is in the range of F_is
if size(%O,'*') <> 0 then
[%ptr,%rk2]=lufact([[%I;%O] spzeros(%fm+1,%fm+1-%m)]',[%tol,0.001]);
ludel(%ptr);
if %rk<%rk2 then
error(msprintf(_('%s: solution unbounded.'),'lmisolver'));
end
end
%O=%O*%P
%I=%I*%P;
%kerE=%kerE*%P;
%m=%rk;
%P=[];
end
end
//Testing to see if solution or the LMI value is unique
if size(%I,'*')==0 then //the LMI reduces to %I0 >0
//checking positiveness of %I0
if ~lmicheck(list(),vec2list(%I0v,%dim_I))
error(msprintf(_('%s: not feasible or badly defined problem.'),'lmisolver'));
else
%Xlist=vec2list(%x0,%dim_X,%ind_X);
return;
end
end
//Testing feasibility of initial guess
//are LMIs positive?
[ok,%sm]=lmicheck(list(),vec2list(%I0v,%dim_I))
if ok&size(%O,'*')==0 then
//LMIs are positive, problem is feasible, return
%Xlist=vec2list(%x0,%dim_X,%ind_X);
return;
end
%M=%Mb*norm([%I0v,%I],1)
if ~(%sm>%to) then
//given initial point is not feasible. Look for a feasible initial point.
lmisolvertrace(msprintf(_('%s: FEASIBILITY PHASE.'),'lmisolver'));
// mineigI is the smallest eigenvalue of I0
%mineigI=min(real(flat_block_matrix_eigs(%I0v,%blck_szs)))
// Id is the identity
%Id = build_flat_identity(%blck_szs)
if (%M < %Id'*%I0v+1e-5),
error(msprintf(_('%s: Mbound too small.'),'lmisolver'));
end;
// initial x0
%x00 = [zeros(%m,1); max(-1.1*%mineigI, 1e-5)];
//Compute Z0 the projection of Id on the space Tr Ii*Z = 0
%Z0=%Id-%I*(%I\%Id);
if %f then
//check: trace(Ii*Z0) = 0 <=> %Id'*%Z0= 0
%I'*%Z0
end
//compute mineigZ is the smallest eigenvalue of Z0
%mineigZ=min(real(flat_block_matrix_eigs(%Z0,%blck_szs)));
%ka=sum(%blck_szs.^2);
%Z0(%ka+1) = max( -1.1 *%mineigZ, 1e-5 ); // z
%Z0(1:%ka) = %Z0(1:%ka) + %Z0(%ka+1)*%Id;
%Z0 = %Z0 / (%Id'*%Z0(1:%ka)); // make Tr Z0 = 1
if %f then //for checking semidef
Z=sysdiag(matrix(%Z0(1:16),4,-1),%Z0(17))
F0=full(sysdiag(matrix(%I0v,4,-1), %M-%Id'*%I0v));
for i=1:10,
Fi=full(sysdiag(matrix(%I(:,i),4,-1),-%Id'*%I(:,i)));
mprintf('i=%d %e\n',i,abs(trace(Fi*Z)-%c(i)));
end
F11=sysdiag(matrix(%Id,4,-1),0);
mprintf('i=%d %e\n',11,abs(trace(F11*Z)-%c(11)))
end
//Pack Z0 and I
%Z0=pack(%Z0,[%blck_szs,1]);
%temp=full(pack([%I0v, %I, %Id;
%M-%Id'*%I0v, -%Id'*%I, 0 ],[%blck_szs,1]));
%c=[zeros(%m,1); 1];
[%xi,%Z0,%ul,%info]=semidef(%x00,%Z0,%temp,[%blck_szs,1],%c,[%nu,%ato,-1,0,%mite]);
%temp=[];
%xi=%xi(1:%m);
select %info(1)
case 1
error(msprintf(_('%s: Max. iters. exceeded.'),'lmisolver'))
case 2 then
lmisolvertrace(msprintf(_('%s: Absolute accuracy reached.'),'lmisolver'))
case 3 then
lmisolvertrace(msprintf(_('%s: Relative accuracy reached.'),'lmisolver'))
case 4 then
lmisolvertrace(msprintf(_('%s: Target value reached.'),'lmisolver'))
case 5 then
error(msprintf(_('%s: Target value not achievable.'),'lmisolver'))
else
warning(msprintf(_('%s: No feasible solution found.'),'lmisolver'))
end
if %info(2) == %mite then
error(msprintf(_('%s: max number of iterations exceeded.'),'lmisolver'));
end
if (%ul(1) > %ato) then
error(msprintf(_('%s: No feasible solution exists.'),'lmisolver'));
end
// if (%ul(1) > 0) then %I0v=%I0v+%ato*%Id;end
lmisolvertrace(msprintf(_('%s: feasible solution found.'),'lmisolver'));
else
lmisolvertrace(msprintf(_('%s: Initial guess feasible.'),'lmisolver'));
%xi=zeros(%m,1);
end
if size(%O,'*')<>0 then
lmisolvertrace(msprintf(_('%s: OPTIMIZATION PHASE.') ,'lmisolver'));
%M = max(%M, %Mb*sum(abs([%I0v,%I]*[1; %xi])));
// Id is the identity
%Id = build_flat_identity(%blck_szs)
// M must be greater than trace(F(x0)) for bigM.sci
[%ptr,%rkA]=lufact(%I'*%I,[%tol,0.001]);
%Z0=lusolve(%ptr,full(%I'*%Id-%O'));
%Z0=%Id-%I*%Z0;
ludel(%ptr)
//check: trace(Ii*Z0) = c <=> %I(:,k)'*%Z0= %O(k) (k = 1:m)
// mineigZ is the smallest eigenvalue of Z0
%mineigZ=min(real(flat_block_matrix_eigs(%Z0,%blck_szs)))
%ka=sum(%blck_szs.^2);
%Z0(%ka+1) = max(1e-5, -1.1*%mineigZ);
%Z0(1:%ka) = %Z0(1:%ka) + %Z0(%ka+1)*%Id;
if (%M < %Id'*[%I0v,%I]*[1;%xi] + 1e-5),
error(msprintf(_('%s: M must be strictly greater than trace of F(x0).'),'lmisolver'));
end;
// add scalar block Tr F(x) <= M
%blck_szs = [%blck_szs,1];
temp=full(pack([%I0v, %I;
%M-%Id'*%I0v, -%Id'*%I],%blck_szs));
[%xopt,%z,%ul,%info]=semidef(%xi,pack(%Z0,%blck_szs),temp,%blck_szs,full(%O),[%nu,%ato,%rto,0.0,%mite]);
clear temp
if %info(2) == %mite then
warning(msprintf(_('%s: max number of iterations exceeded, solution may not be optimal'),'lmisolver'));
end;
if sum(abs([%I0v,%I]*[1; %xopt])) > 0.9*%M then
lmisolvertrace(msprintf(_('%s: may be unbounded below'),'lmisolver'));
end;
if %xopt<>[]&~(%info(2) == %mite) then
lmisolvertrace(msprintf(_('%s: optimal solution found'),'lmisolver'));
else %xopt=%xi;
end
else
%xopt=%xi;
end
%Xlist=vec2list((%x0+%kerE*%xopt),%dim_X,%ind_X);
%OPT=%O0+%O*%xopt;
endfunction
function [bigVector]=splist2vec(li)
//li=list(X1,...Xk) is a list of matrices
//bigVector: sparse vector [X1(:);...;Xk(:)] (stacking of matrices in li)
bigVector=[];
li=aplat(li)
for mati=li
sm=size(mati);
bigVector=[bigVector;sparse(matrix(mati,prod(sm),1))];
end
endfunction
function [A,b]=spaff2Ab(lme,dimX,D,ind)
//Y,X,D are lists of matrices.
//Y=lme(X,D)= affine fct of Xi's;
//[A,b]=matrix representation of lme in canonical basis.
[LHS,RHS]=argn(0)
select RHS
case 3 then
nvars=0;
for k=dimX'
nvars=nvars+prod(k);
end
x0=zeros(nvars,1);
b=list2vec(lme(vec2list(x0,dimX),D));
A=[];
for k=1:nvars
xi=x0;xi(k)=1;
A=[A,sparse(list2vec(lme(vec2list(xi,dimX),D))-b)];
end
case 4 then
nvars=0;
for k=dimX'
nvars=nvars+prod(k);
end
x0=zeros(nvars,1);
b=list2vec(lme(vec2list(x0,dimX,ind),D));
A=[];
for k=1:nvars
xi=x0;xi(k)=1;
A=[A,sparse(list2vec(lme(vec2list(xi,dimX,ind),D))-b)];
end
end
endfunction
function lmisolvertrace(txt)
mprintf("%s\n",txt)
endfunction
function [ok,%sm,%nor]=lmicheck(E,I)
//checking positiveness of the LMI
%sm=100;
for %w=I
if %w~=[] then
s=mini(real(spec(%w)))
%sm=min(%sm,s)
end
end
ok=%sm>=-%tol
//Checking norm of the LME
%nor=0
for %w=E
if %w~=[] then
n=norm(%w,1)
%nor=max(%nor,n)
end
end
ok=%sm>=-%tol & %nor<%tol
endfunction
function e=flat_block_matrix_eigs(V,blck_szs)
// Computes the eigenvalues of each block of a flatten block matrix
ka=0; e=[];
for n=matrix(blck_szs,1,-1)
e=[e;spec(matrix(V(ka+[1:n^2]),n,n))]
ka=ka+n^2;
end;
endfunction
function Id = build_flat_identity(blck_szs)
//build a flat representation of a block identity matrix
ka=0;
for n=matrix(blck_szs,1,-1)
Id(ka+[1:n^2]) = matrix(eye(n,n),-1,1); // identity
ka=ka+n^2;
end;
endfunction
|