1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
// =============================================================================
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - INRIA - Michael Baudin
// Copyright (C) 2009 - INRIA - Michael Baudin
//
// This file is distributed under the same license as the Scilab package.
// =============================================================================
// <-- JVM NOT MANDATORY -->
// <-- ENGLISH IMPOSED -->
// <-- NO CHECK REF -->
//
// Do not check ref, because imp option create a output messages
// which contains lots of floating point values which may
// be slightly different across platforms, without being bugs.
//
// optim_script.tst --
// Test the optim command with the Rosenbrock test case
// in the case where the cost function is a Scilab function.
// The expected solution is x=(1,...,1) where f(x)=0
//
//
// assert_close --
// Returns 1 if the two real matrices computed and expected are close,
// i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
if expected==0.0 then
shift = norm(computed-expected);
else
shift = norm(computed-expected)/norm(expected);
end
if shift < epsilon then
flag = 1;
else
flag = 0;
end
if flag <> 1 then pause,end
endfunction
Leps=1.e-3;
bs=[5 5];
bi=-bs;
x0=[-1.2 1];
xopt=[1 1];
fopt = 0.0;
gopt = 0.0;
function [ f , g , ind ] = rosenbrock ( x , ind )
if ind == 2 | ind == 4 then
f = 100.0 *(x(2)-x(1)^2)^2 + (1-x(1))^2;
end
if ind == 2 | ind == 4 then
g(1) = - 400. * ( x(2) - x(1)**2 ) * x(1) -2. * ( 1. - x(1) )
g(2) = 200. * ( x(2) - x(1)**2 )
end
endfunction
//
// Configure the test so that verbose message do not interrupt the test.
lines(0);
//
// 1. Test unconstrained BFGS
// Test without arguments
[f,x,g,tr]=optim(rosenbrock,x0);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function
[f,x,g]=optim(rosenbrock,x0,'qn','ar',50);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with hot-restart array tr
[f,x,g,tr]=optim(rosenbrock,x0,'qn','ar',50);
[f,x,g]=optim(rosenbrock,x0,tr);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function, maximum number of iterations
[f,x,g]=optim(rosenbrock,x0,'qn','ar', 50 , 100 );
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with various imp levels
// imp = 0 : No messages
[f,x,g]=optim(rosenbrock,x0,'qn',imp=0);
// imp = 1 : one line at start, one line at end
[f,x,g]=optim(rosenbrock,x0,'qn',imp=1);
// imp = 2 : one line by iteration
[f,x,g]=optim(rosenbrock,x0,'qn',imp=2);
// imp = 3 : one line by iteration + one line by line search
[f,x,g]=optim(rosenbrock,x0,'qn',imp=3);
// Negative imp : call back the cost function with ind = 0 each -imp iteration
[f,x,g]=optim(rosenbrock,x0,'qn',imp=-5);
//
// 2. Test unconstrained Limited Memory BFGS
[f,x,g]=optim(rosenbrock,x0,'gc');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
[f,x,g]=optim(rosenbrock,x0,'gc','ar',50);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with various imp levels
// imp = 0 : No messages
[f,x,g]=optim(rosenbrock,x0,'gc',imp=0);
// imp = 1,2 : one line at start, one line at end
[f,x,g]=optim(rosenbrock,x0,'gc',imp=1);
// imp = 3 : one line by iteration
[f,x,g]=optim(rosenbrock,x0,'gc',imp=2);
// imp = 4 : one line by iteration + one line by line search
[f,x,g]=optim(rosenbrock,x0,'gc',imp=3);
//
// 3. Test unconstrained non-differentiable method
[f,x,g]=optim(rosenbrock,x0,'nd');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function
[f,x,g]=optim(rosenbrock,x0,'nd','ar',100);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function, maximum number of iterations
[f,x,g]=optim(rosenbrock,x0,'nd','ar', 100 , 100 );
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with various imp levels
// imp = 0 : No messages
[f,x,g]=optim(rosenbrock,x0,'nd',imp=0);
// imp = 1,2 : one line at start, one line at end
[f,x,g]=optim(rosenbrock,x0,'nd',imp=1);
// imp = 3 : one line by iteration
[f,x,g]=optim(rosenbrock,x0,'nd',imp=2);
// imp = 4 : one line by iteration + one line by line search
[f,x,g]=optim(rosenbrock,x0,'nd',imp=3);
//
// 4. Test bound-constrained BFGS
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn','ar',50);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function, maximum number of iterations
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn','ar', 100 , 100 );
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with various imp levels
// imp = 0 : No messages
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn',imp=0);
// imp = 1,2 : one line at start, one line at end
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn',imp=1);
// imp = 3 : one line by iteration
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn',imp=2);
// imp = 4 : one line by iteration + one line by line search
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'qn',imp=3);
//
// 5. Test bound-constrained Limited Memory BFGS
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc','ar',100);
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with maximum number of call to cost function, maximum number of iterations
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc','ar', 100 , 100 );
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
// Test with various imp levels
// imp = 0 : No messages
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc',imp=0);
// imp = 1,2 : one line at start, one line at end
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc',imp=1);
// imp = 3 : one line by iteration
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc',imp=2);
// imp = 4 : one line by iteration + one line by line search
[f,x,g]=optim(rosenbrock,'b',bi,bs,x0,'gc',imp=3);
//
// 6. Test "sd", "si", "td", "ti" options
[f,x,g,td]=optim(rosenbrock,x0,'sd');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
[f,x,g,ti]=optim(rosenbrock,x0,'si');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
[f,x,g,ti,td]=optim(rosenbrock,x0,'si','sd');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
[f,x,g,ti,td]=optim(rosenbrock,x0,"ti",[2 2 2],"td",[1.1 1.1 1.1],'si','sd');
assert_close ( x , xopt , Leps );
assert_close ( f , fopt , Leps );
assert_close ( g , gopt , Leps );
|