File: optim_sourcec.dia.ref

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (76 lines) | stat: -rw-r--r-- 2,481 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
// =============================================================================
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - INRIA - Michael Baudin
// Copyright (C) 2009 - DIGITEO - Michael Baudin
//
//  This file is distributed under the same license as the Scilab package.
// =============================================================================
// <-- JVM NOT MANDATORY -->
// <-- ENGLISH IMPOSED -->
// optim.tst --
//   Test the optim command with the Rosenbrock test case
//   in the case where the cost function is provided as a Fortran 
//   routine.
//   The "genros" function is defined in optimization/sci_gateway/fortran/Ex-optim.f
//
// This is the precision measured with experiments.
ilib_verbose(0);
Leps=10^12*%eps;
// n : dimension of the problem
n=3;
bs=10.*ones(n,1);
bi=-bs;
x0=1.2*ones(n,1);
epsx=1.e-15*x0;
xopt=ones(n,1);
// Move into the temporary directory to create the temporary files there
cur_dir = pwd();
chdir(TMPDIR);
// External function written in C (C compiler required)
// write down the C code (Rosenbrock problem)
C=['#include <math.h>'
'double sq(double x)'
'{ return x*x;}'
'void rosenc(int *ind, int *n, double *x, double *f, double *g, '
'                                int *ti, float *tr, double *td)'
'{'
'  double p;'
'  int i;'
'  p=td[0];'
'  if (*ind==2||*ind==4) {'
'    *f=1.0;'
'    for (i=1;i<*n;i++)'
'      *f+=p*sq(x[i]-sq(x[i-1]))+sq(1.0-x[i]);'
'  }'
'  if (*ind==3||*ind==4) {'
'    g[0]=-4.0*p*(x[1]-sq(x[0]))*x[0];'
'    for (i=1;i<*n-1;i++)'
'      g[i]=2.0*p*(x[i]-sq(x[i-1]))-4.0*p*(x[i+1]-sq(x[i]))*x[i]-2.0*(1.0-x[i]);'
'    g[*n-1]=2.0*p*(x[*n-1]-sq(x[*n-2]))-2.0*(1.0-x[*n-1]);'
'  }'
'}'];
mputl(C,'rosenc.c');
// compile the C code
libpath=ilib_for_link('rosenc','rosenc.c',[],'c');
// incremental linking
exec loader.sce;
chdir(cur_dir);
//solve the problem
valtd=100;
// Test with default solver and default settings.
[f,x,g]=optim('rosenc',x0,'td',valtd);
if abs(f-1+norm(x-xopt) ) > Leps then bugmes();quit;end
// Test with all solvers
solverlist=["gc" "qn" "nd"];
for solver=solverlist
  [f,x,g]=optim('rosenc',x0,solver,'td',valtd);
  if abs(f-1+norm(x-xopt) ) > Leps then bugmes();quit;end
end
// Test all verbose levels with all possible solvers
verboselevels=[0];
for verbose=verboselevels
  for solver=solverlist
    [f,x,g]=optim('rosenc',x0,solver,'td',valtd,imp=verbose);
    if abs(f-1+norm(x-xopt) ) > Leps then bugmes();quit;end
  end
end