File: optim_sourcefortran1.dia.ref

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (81 lines) | stat: -rw-r--r-- 2,745 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// =============================================================================
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008 - INRIA - Michael Baudin
// Copyright (C) 2009 - DIGITEO - Michael Baudin
//
//  This file is distributed under the same license as the Scilab package.
// =============================================================================
// <-- JVM NOT MANDATORY -->
// <-- ENGLISH IMPOSED -->
// optim.tst --
//   Test the optim command with the Rosenbrock test case
//   in the case where the cost function is provided as a Fortran 
//   routine and the parameter is given as a scilab variable, using the "td" option.
//
//   Note : the following source code was copied from optimization/sci_gateway/fortran/Ex-optim.f
//   Thus, the "genros" function from Ex-optim.f is not needed anymore.
//
// This is the precision measured with experiments.
ilib_verbose(0);
Leps=10^12*%eps;
n=3;
xopt=ones(n,1);
// Move into the temporary directory to create the temporary files there
cur_dir = pwd();
chdir(TMPDIR);
//
// Define a fortran source code and compile it (fortran compiler required)
//
// External function written in Fortran (Fortran compiler required)
// write down the Fortran  code (Rosenbrock problem)
F=[ '      subroutine rosenf(ind, n, x, f, g, ti, tr, td)'
'      integer ind,n,ti(*)'
'      double precision x(n),f,g(n),td(*)'
'      real tr(*)'
'c'
'      double precision y,p'
'      p=td(1)'
'      if (ind.eq.2.or.ind.eq.4) then'
'        f=1.0d0'
'        do i=2,n'
'          f=f+p*(x(i)-x(i-1)**2)**2+(1.0d0-x(i))**2'
'        enddo'
'      endif'
'      if (ind.eq.3.or.ind.eq.4) then'
'        g(1)=-4.0d0*p*(x(2)-x(1)**2)*x(1)'
'        if(n.gt.2) then'
'          do i=2,n-1'
'            g(i)=2.0d0*p*(x(i)-x(i-1)**2)-4.0d0*p*(x(i+1)-x(i)**2)*x(i)'
'     &           -2.0d0*(1.0d0-x(i))'
'          enddo'
'        endif'
'        g(n)=2.0d0*p*(x(n)-x(n-1)**2)-2.0d0*(1.0d0-x(n))'
'      endif'
'      return'
'      end'];
mputl(F,'rosenf.f');
// compile the Fortran code
libpath=ilib_for_link('rosenf','rosenf.c',[],'f');
// incremental linking
linkid=link(libpath,'rosenf','f');
chdir(cur_dir);
//solve the problem
x0=1.2*ones(n,1);
valtd=100;
[f,xo,go]=optim('rosenf',x0,'td',valtd);
// Test with all solvers
solverlist=["gc" "qn" "nd"];
for solver=solverlist
  [f,x,g]=optim('rosenf',x0,solver,'td',valtd);
  if abs(f-1+norm(x-xopt) ) > Leps then bugmes();quit;end
end
// Test all verbose levels with all possible solvers
verboselevels=[0];
for verbose=verboselevels
  for solver=solverlist
    [f,x,g]=optim('rosenf',x0,solver,'td',valtd,imp=verbose);
    if abs(f-1+norm(x-xopt) ) > Leps then bugmes();quit;end
  end
end
// Clean-up
ulink(linkid);