1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008-2009 - INRIA - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
// assert_close --
// Returns 1 if the two real matrices computed and expected are close,
// i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
if expected==0.0 then
shift = norm(computed-expected);
else
shift = norm(computed-expected)/norm(expected);
end
if shift < epsilon then
flag = 1;
else
flag = 0;
end
if flag <> 1 then bugmes();quit;end
endfunction
//
// assert_equal --
// Returns 1 if the two real matrices computed and expected are equal.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_equal ( computed , expected )
if computed==expected then
flag = 1;
else
flag = 0;
end
if flag <> 1 then bugmes();quit;end
endfunction
//
// gould.nonconvex --
// The Gould test case with additionnal inequality constraints.
// Arguments
// x : the point where to compute the cost
// index : a flag which states what is to compute
// * if index=1, or no index, returns the value of the cost
// function (default case)
// * if index=2, returns the value of the nonlinear inequality
// constraints, as a row array
// * if index=3, returns an array which contains
// at index #0, the value of the cost function
// at index #1 to the end is the list of the values of the nonlinear
// constraints
// Discussion:
// The problem is to minimize a cost function with 4 non linear constraints.
// This is Problem 4.1 in Subrahmanyam, extracted from Gould.
// Non convex.
// The constraint region is a narrow winding (half-moon shaped) valley.
// Solution showed with tolerance 1.e-8.
//
// Reference:
// An extension of the simplex method to constrained
// nonlinear optimization
// M.B. Subrahmanyam
// Journal of optimization theory and applications
// Vol. 62, August 1989
//
// Gould F.J.
// Nonlinear Tolerance Programming
// Numerical methods for Nonlinear optimization
// Edited by F.A. Lootsma, pp 349-366, 1972
//
function [ f , c , index ] = gouldnonconvex ( x , index )
f = []
c = []
if ( index==2 | index==6 ) then
f = (x(1) - 10.0 )^3 + ( x(2) - 20.0 ) ^ 3
end
if ( index==5 | index==6 ) then
c1 = x(1) - 13.0
c2 = ( x(1) - 5.0 )^2 + (x(2) - 5.0 )^2 - 100.0
c3 = -( x(1) - 6.0 )^2 - (x(2) - 5.0 )^2 + 82.81
c4 = x(2)
c = [c1 c2 c3 c4]
end
endfunction
//
// Test optimbase_checkx0 method
//
// Test without anything
opt = optimbase_new ();
opt = optimbase_configure ( opt , "-numberofvariables",2);
opt = optimbase_configure ( opt , "-verbose",1);
[ opt , isok ] = optimbase_checkx0 ( opt );
Checking initial guess...
... initial guess is feasible.
assert_equal ( isok , %T );
opt = optimbase_destroy(opt);
//
// Test with satisfied/unsatisfied bounds constraints
opt = optimbase_new ();
opt = optimbase_configure ( opt , "-numberofvariables",2);
opt = optimbase_configure ( opt , "-verbose",1);
opt = optimbase_configure ( opt , "-boundsmin" , [-5.0 -5.0] );
opt = optimbase_configure ( opt , "-boundsmax" , [5.0 5.0] );
opt = optimbase_configure ( opt , "-x0", [1.0 1.0]' );
[ opt , isok ] = optimbase_checkx0 ( opt );
Checking initial guess...
... initial guess is feasible.
assert_equal ( isok , %T );
opt = optimbase_configure ( opt , "-x0",[-6.0 1.0]');
[ opt , isok ] = optimbase_checkx0 ( opt );
Checking initial guess...
Component #1/2 of x is lower than min bound -5.000000e+00
... initial guess is not feasible.
assert_equal ( isok , %F );
opt = optimbase_destroy(opt);
//
// Test with satisfied/unsatisfied nonlinear inequality constraints
opt = optimbase_new ();
opt = optimbase_configure ( opt , "-numberofvariables",2);
opt = optimbase_configure ( opt , "-verbose",1);
opt = optimbase_configure ( opt , "-nbineqconst",4);
opt = optimbase_configure ( opt , "-function" , gouldnonconvex );
opt = optimbase_configure ( opt , "-x0" , [ 14.0950013 , 0.8429636 ]');
[ opt , isok ] = optimbase_checkx0 ( opt );
Checking initial guess...
Function Evaluation #1 at [14.095001 0.8429636]
... initial guess is feasible.
assert_equal ( isok , %T );
opt = optimbase_configure ( opt , "-x0" , [ 14.0950013 , 0.0 ]');
[ opt , isok ] = optimbase_checkx0 ( opt );
Checking initial guess...
Function Evaluation #2 at [14.095001 0]
Inequality constraint #3/4 is not satisfied for x
... initial guess is not feasible.
assert_equal ( isok , %F );
opt = optimbase_destroy(opt);
|