File: optimbase_function.dia.ref

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (321 lines) | stat: -rw-r--r-- 11,044 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008-2009 - INRIA - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
// assert_close --
//   Returns 1 if the two real matrices computed and expected are close,
//   i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
//   computed, expected : the two matrices to compare
//   epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
  if expected==0.0 then
    shift = norm(computed-expected);
  else
    shift = norm(computed-expected)/norm(expected);
  end
  if shift < epsilon then
    flag = 1;
  else
    flag = 0;
  end
  if flag <> 1 then bugmes();quit;end
endfunction
//
// assert_equal --
//   Returns 1 if the two real matrices computed and expected are equal.
// Arguments
//   computed, expected : the two matrices to compare
//   epsilon : a small number
//
function flag = assert_equal ( computed , expected )
  if computed==expected then
    flag = 1;
  else
    flag = 0;
  end
  if flag <> 1 then bugmes();quit;end
endfunction
//
// Test the call to the cost function
//
// Test when there is no cost function
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
cmd = "[ opt , f , index ] = optimbase_function ( opt , [0.0 0.0] , 1 );";
execstr(cmd,"errcatch");
computed = lasterror();
expected = "optimbase_function: Empty function (use -function option).";
assert_equal ( computed , expected );
opt = optimbase_destroy(opt);
// Test simple case
function [ y , index ] = rosenbrock ( x , index )
  y = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
endfunction
opt = optimbase_new ();
funevals = optimbase_get ( opt , "-funevals" );
assert_equal ( funevals , 0  );
opt = optimbase_configure(opt,"-numberofvariables",2);
opt = optimbase_configure(opt,"-function",rosenbrock);
[ opt , f , index ] = optimbase_function ( opt , [0.0 0.0] , 1 );
assert_close ( f , 1.0 , %eps );
assert_equal ( index , 1  );
funevals = optimbase_get ( opt , "-funevals" );
assert_equal ( funevals , 1  );
opt = optimbase_destroy(opt);
// Test simple case where the index is changed
function [ y , index ] = rosenbrock0 ( x , index )
  y = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
  index = 0;
endfunction
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
opt = optimbase_configure(opt,"-function",rosenbrock0);
[ opt , f , index ] = optimbase_function ( opt , [0.0 0.0] , 1 );
assert_close ( f , 1.0 , %eps );
assert_equal ( index , 0  );
opt = optimbase_destroy(opt);
//
// Test with an additional argument
// In this case, the mydata variable is passed
// explicitely by the optimization class.
// So the actual name "mydata" does not matter
// and whatever variable name can be used.
//
function [ y , index , mydata ] = rosenbrock2 ( x , index , mydata )
  a = mydata.a
  y = 100*(x(2)-x(1)^2)^2 + ( a - x(1))^2;
endfunction
mystuff = tlist(["T_MYSTUFF","a"]);
mystuff.a = 12.0;
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
opt = optimbase_configure(opt,"-function",rosenbrock2);
opt = optimbase_configure(opt,"-costfargument",mystuff);
[ opt , f , index ] = optimbase_function ( opt , [0.0 0.0] , 1 );
assert_close ( f , 144. , %eps );
assert_equal ( index , 1 );
opt = optimbase_destroy(opt);
//
// Test with non linear constraints : there is an index
// optimtestcase --
//   Non linear inequality constraints are positive.
//    
// Arguments
//   x: the point where to compute the function
//   index : the stuff to compute
// Note
//  The following protocol is used
//  * if index=2, returns f, the value of the cost 
//    function
//  * if index=5, returns c, the value of the nonlinear inequality 
//    constraints, as a row array
//  * if index=6, returns f and c
//  The inequality constraints are expected to be positive.
//
function [ f , c , index ] = optimtestcase ( x , index )
  f = []
  c = []
  if ( index == 2 | index == 6 ) then
    f = x(1)^2 + x(2)^2 + 2.0 * x(3)^2 + x(4)^2 ...
      - 5.0 * x(1) - 5.0 * x(2) - 21.0 * x(3) + 7.0 * x(4)
  end
  if ( index == 5 | index == 6 ) then
    c1 = - x(1)^2 - x(2)^2 - x(3)^2 - x(4)^2 ...
              - x(1) + x(2) - x(3) + x(4) + 8
    c2 = - x(1)^2 - 2.0 * x(2)^2 - x(3)^2 - 2.0 * x(4)^2 ...
              + x(1) + x(4) + 10.0
    c3 = - 2.0 * x(1)^2 - x(2)^2 - x(3)^2 - 2.0 * x(1) ...
              + x(2) + x(4) + 5.0
    c = [c1 c2 c3]
  end
endfunction
x0 = [0.0 0.0 0.0 0.0].';
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",4);
opt= optimbase_configure(opt,"-function",optimtestcase);
opt= optimbase_configure(opt,"-nbineqconst",3);
[this,f,c,index] = optimbase_function ( opt , x0 , 2 );
assert_equal ( index , 2 );
assert_close ( f , 0. , %eps );
assert_equal ( c , [] );
[this,f,c,index] = optimbase_function ( opt , x0 , 5 );
assert_equal ( index , 5 );
assert_equal ( f , [] );
assert_close ( c , [8.    10.    5.] , %eps );
[this,f,c,index] = optimbase_function ( opt , x0 , 6 );
assert_equal ( index , 6 );
assert_close ( f , 0. , %eps );
assert_close ( c , [8.    10.    5.] , %eps );
opt = optimbase_destroy(opt);
//
// Test when there are both nonlinear constraints and a customized data
// boxproblemA --
//   Computes the Box problem A cost function and 
//   inequality constraints.
//
// Arguments
//   x: the point where to compute the function
//   index : what to compute
//     if index=2, returns f
//     if index=5, returns c
//     if index=6, returns f and c
//   data : the parameters of Box cost function
// Note
//  The inequality constraints are expected to be positive.
//
function [ f , c , index , data ] = boxproblemA ( x , index , data )
  f = []
  c = []
  b = x(2) + 0.01 * x(3)
  x6 = (data.k1 + data.k2 * x(2) ...
            + data.k3 * x(3) + data.k4 * x(4) + data.k5 * x(5)) * x(1)
  y1 = data.k6 + data.k7 * x(2) + data.k8 * x(3) ...
            + data.k9 * x(4) + data.k10 * x(5)
  y2 = data.k11 + data.k12 * x(2) + data.k13 * x(3) ...
            + data.k14 * x(4) + data.k15 * x(5)
  y3 = data.k16 + data.k17 * x(2) + data.k18 * x(3) ...
            + data.k19 * x(4) + data.k20 * x(5)
  y4 = data.k21 + data.k22 * x(2) + data.k23 * x(3) ...
            + data.k24 * x(4) + data.k25 * x(5)
  x7 = ( y1 + y2 + y3 ) * x(1)
  x8 = (data.k26 + data.k27 * x(2) + data.k28 * x(3) ...
            + data.k29 * x(4) ...
            + data.k30 * x(5) ) * x(1) + x6 + x7
  if ( index==2 | index==6 ) then
    f = (data.a2 * y1 + data.a3 * y2 + data.a4 * y3 + data.a5 * y4 ...
             + 7840 * data.a6 - 100000 * data.a0 ...
             - 50800 * b * data.a7 + data.k31 + data.k32 * x(2) + data.k33 * x(3) ...
             + data.k34 * x(4) + data.k35 * x(5)) * x(1) ...
             - 24345 + data.a1 * x6
    f = -f
  end
  if ( index==5 | index==6 ) then
      c1 = x6
      c2 = 294000 - x6
      c3 = x7
      c4 = 294000 - x7
      c5 = x8
      c6 = 277200 - x8
      c = [c1 c2 c3 c4 c5 c6]
  end
endfunction
boxparams = struct();
boxparams.a0 = 9;
boxparams.a1 = 15;
boxparams.a2 = 50;
boxparams.a3 = 9.583;
boxparams.a4 = 20;
boxparams.a5 = 15;
boxparams.a6 = 6;
boxparams.a7 = 0.75;
boxparams.k1 = -145421.402;
boxparams.k2 = 2931.1506;
boxparams.k3 = -40.427932;
boxparams.k4 = 5106.192;
boxparams.k5 = 15711.36;
boxparams.k6 = -161622.577;
boxparams.k7 = 4176.15328;
boxparams.k8 = 2.8260078;
boxparams.k9 = 9200.476;
boxparams.k10 = 13160.295;
boxparams.k11 = -21686.9194;
boxparams.k12 = 123.56928;
boxparams.k13 = -21.1188894;
boxparams.k14 = 706.834;
boxparams.k15 = 2898.573;
boxparams.k16 = 28298.388;
boxparams.k17 = 60.81096;
boxparams.k18 = 31.242116;
boxparams.k19 = 329.574;
boxparams.k20 = -2882.082;
boxparams.k21 = 74095.3845;
boxparams.k22 = -306.262544;
boxparams.k23 = 16.243649;
boxparams.k24 = -3094.252;
boxparams.k25 = -5566.2628;
boxparams.k26 = -26237.0;
boxparams.k27 = 99.0;
boxparams.k28 = -0.42;
boxparams.k29 = 1300.0;
boxparams.k30 = 2100.0;
boxparams.k31 = 925548.252;
boxparams.k32 = -61968.8432;
boxparams.k33 = 23.3088196;
boxparams.k34 = -27097.648;
boxparams.k35 = -50843.766;
x0 = [2.52 2.0 37.5 9.25 6.8].';
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",5);
opt= optimbase_configure(opt,"-function",boxproblemA);
opt = optimbase_configure(opt,"-costfargument",boxparams);
opt = optimbase_configure(opt,"-nbineqconst",6);
[this,f,c,index] = optimbase_function ( opt , x0 , 2 );
assert_equal ( index , 2 );
assert_close ( f , -2351243.5  , 1.e-7 );
assert_equal ( c , [] );
[this,f,c,index] = optimbase_function ( opt , x0 , 5 );
assert_equal ( index , 5 );
assert_equal ( f , [] );
assert_close ( c , [32745.827    261254.17    96991.969    197008.03    130368.43    146831.57] , 1.e-7 );
[this,f,c,index] = optimbase_function ( opt , x0 , 6 );
assert_equal ( index , 6 );
assert_close ( f , -2351243.5 , 1.e-7 );
assert_close ( c , [    32745.827    261254.17    96991.969    197008.03    130368.43    146831.57] , 1.e-7 );
opt = optimbase_destroy(opt);
//
// Test with an additional argument
// which is modified by the call.
//
function [ y , index , mydata ] = rosenbrock3 ( x , index , mydata )
  mydata.n = mydata.n + 1
  y = 100*(x(2)-x(1)^2)^2 + ( 1.0 - x(1))^2;
endfunction
mystuff = tlist(["T_MYSTUFF","n"]);
mystuff.n = 0;
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
opt = optimbase_configure(opt,"-function",rosenbrock3);
opt = optimbase_configure(opt,"-costfargument",mystuff);
[ opt , f , index ] = optimbase_function ( opt , [0.0 0.0] , 2 );
assert_equal ( index , 2 );
assert_close ( f , 1.0 , %eps );
mystuff = optimbase_cget ( opt , "-costfargument" );
assert_equal ( mystuff.n , 1 );
opt = optimbase_destroy(opt);
//
// rosenbrock --
//   Defines the Rosenbrock test function.
// Arguments
//    x : the current point
//    index : a flag which indicates what to compute
//      if index=1, output a message
//      if index=2, compute f
//      if index=3, compute g
//      if index=4, compute f and g
// Note : 
//   This function could be accepted by optim, hence the test.
//
function [ f , g , index ] = rosenbrock4 ( x , index )
  if index == 1 then
    mprintf ( "index = %d, x = [%f %f]\n" , index , x(1) , x(2) );
  end
  f = 100.0 *(x(2)-x(1)^2)^2 + (1-x(1))^2;
  g(1) = - 400. * ( x(2) - x(1)**2 ) * x(1) -2. * ( 1. - x(1) )
  g(2) = 200. * ( x(2) - x(1)**2 )
endfunction
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
opt= optimbase_configure(opt,"-function", rosenbrock4 );
opt = optimbase_configure(opt,"-withderivatives",%t);
[ opt , f , g , index ] = optimbase_function ( opt , [-1.2 1.0] , 4 );
assert_equal ( index , 4 );
assert_close ( f , 24.2 , %eps );
assert_close ( g , [-215.6 -88.0].' , %eps );
opt = optimbase_destroy(opt);