File: optimbase_isinbounds.linux.dia.ref

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (191 lines) | stat: -rw-r--r-- 6,669 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008-2009 - INRIA - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
// assert_close --
//   Returns 1 if the two real matrices computed and expected are close,
//   i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
//   computed, expected : the two matrices to compare
//   epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
  if expected==0.0 then
    shift = norm(computed-expected);
  else
    shift = norm(computed-expected)/norm(expected);
  end
  if shift < epsilon then
    flag = 1;
  else
    flag = 0;
  end
  if flag <> 1 then bugmes();quit;end
endfunction
//
// assert_equal --
//   Returns 1 if the two real matrices computed and expected are equal.
// Arguments
//   computed, expected : the two matrices to compare
//   epsilon : a small number
//
function flag = assert_equal ( computed , expected )
  if computed==expected then
    flag = 1;
  else
    flag = 0;
  end
  if flag <> 1 then bugmes();quit;end
endfunction
//
// gould.nonconvex --
//   The Gould test case with additionnal inequality constraints.
// Arguments
//    x : the point where to compute the cost
//    index : a flag which states what is to compute
//    * if index=1, or no index, returns the value of the cost 
//      function (default case)
//    * if index=2, returns the value of the nonlinear inequality 
//      constraints, as a row array
//    * if index=3, returns an array which contains
//      at index #1, the value of the cost function  
//      at index #2 to the end is the list of the values of the nonlinear 
//      inequality constraints
//  Discussion:
//    The problem is to minimize a cost function with 4 non linear constraints.
//    This is Problem 4.1 in Subrahmanyam, extracted from Gould.
//    Non convex.
//    The constraint region is a narrow winding (half-moon shaped) valley.
//    Solution showed with tolerance 1.e-8.
//
//  Reference:
//    An extension of the simplex method to constrained
//    nonlinear optimization
//    M.B. Subrahmanyam
//    Journal of optimization theory and applications
//    Vol. 62, August 1989
//
//    Gould F.J.
//    Nonlinear Tolerance Programming
//    Numerical methods for Nonlinear optimization
//    Edited by F.A. Lootsma, pp 349-366, 1972
//
function result = gouldnonconvex ( x , index )
  if (~isdef('index','local')) then
    index = 1
  end
  if ( index==1 | index==3 ) then
    f = (x(1) - 10.0 )^3 + ( x(2) - 20.0 ) ^ 3
  end
  if ( index==2 | index==3 ) then
    c1 = x(1) - 13.0
    c2 = ( x(1) - 5.0 )^2  + (x(2) - 5.0 )^2 - 100.0
    c3 = -( x(1) - 6.0 )^2 - (x(2) - 5.0 )^2 + 82.81
    c4 = x(2)
  end
  select index
  case 1 then
      result = f
      mprintf( "Computed f = %e\n", f);
  case 2
      result = [c1 c2 c3 c4]
      mprintf( "Computed constraints = %e %e %e %e\n", c1 , c2 , c3 , c4);
  case 3
      result = [f c1 c2 c3 c4]
      mprintf( "Computed f = %e and constraints = %e %e %e %e\n", f , c1 , c2 , c3 , c4);
  else
    errmsg = sprintf("Unknown index %d", index )
    error(errmsg)
  end
endfunction
//
// The same cost function as before, with an 
// additionnal argument, which contains parameters of the 
// cost function and constraints.
// In this case, the mydata variable is passed
// explicitely by the optimization class.
// So the actual name "mydata" does not matter
// and whatever variable name can be used.
//
function result = gouldnonconvex2 ( x , index , mydata )
  if (~isdef('index','local')) then
    index = 1
  end
  if ( index==1 | index==3 ) then
    f = (x(1) - mydata.f1 )^3 + ( x(2) - mydata.f2 ) ^ 3
  end
  if ( index==2 | index==3 ) then
    c1 = x(1) - mydata.a1
    c2 = ( x(1) - 5.0 )^2  + (x(2) - 5.0 )^2 - mydata.a2
    c3 = -( x(1) - 6.0 )^2 - (x(2) - 5.0 )^2 + mydata.a3
    c4 = x(2)
  end
  select index
  case 1 then
      result = f
      mprintf( "Computed f = %e\n", f);
  case 2
      result = [c1 c2 c3 c4]
      mprintf( "Computed constraints = %e %e %e %e\n", c1 , c2 , c3 , c4);
  case 3
      result = [f c1 c2 c3 c4]
      mprintf( "Computed f = %e and constraints = %e %e %e %e\n", f , c1 , c2 , c3 , c4);
  else
    errmsg = sprintf("Unknown index %d", index )
    error(errmsg)
  end
endfunction
//
// Test optimbase_isfeasible method
//
// Test with bounds
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
opt = optimbase_configure(opt,"-verbose",1);
opt = optimbase_configure ( opt , "-boundsmin" , [-5.0 -5.0] );
opt = optimbase_configure ( opt , "-boundsmax" , [5.0 5.0] );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [0.0 0.0] );
assert_equal ( isfeasible , %t );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [-6.0 0.0] );
Component #1/2 of x is lower than min bound -5.000000e+00
assert_equal ( isfeasible , %f );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [0.0 6.0] );
Component #2/2 of x is greater than max bound 5.000000e+00
assert_equal ( isfeasible , %f );
opt = optimbase_destroy(opt);
//
// Test with nonlinear inequality constraints
opt = optimbase_new ();
opt = optimbase_configure(opt,"-numberofvariables",2);
opt = optimbase_configure(opt,"-verbose",1);
opt = optimbase_configure(opt,"-nbineqconst",4);
opt = optimbase_configure ( opt , "-function" , gouldnonconvex );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [ 14.0950013 , 0.8429636 ] );
assert_equal ( isfeasible , %t );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [ 14.0950013 , 0.0 ] );
assert_equal ( isfeasible , %t );
opt = optimbase_destroy(opt);
//
// Test with nonlinear inequality constraints and additionnal argument in cost function
mystuff = struct();
mystuff.f1 = 10.0;
mystuff.f2 = 20.0;
mystuff.a1 = 13.0;
mystuff.a2 = 100.0;
mystuff.a3 = 82.81;
opt = optimbase_new ();
opt = optimbase_configure ( opt , "-numberofvariables",2);
opt = optimbase_configure ( opt , "-verbose",1);
opt = optimbase_configure ( opt , "-nbineqconst",4);
opt = optimbase_configure ( opt , "-function" , gouldnonconvex2 );
opt = optimbase_configure ( opt , "-costfargument" , mystuff );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [ 14.0950013 , 0.8429636 ] );
assert_equal ( isfeasible , %t );
[ opt , isfeasible ] = optimbase_isinbounds ( opt ,  [ 14.0950013 , 0.0 ] );
assert_equal ( isfeasible , %t );
opt = optimbase_destroy(opt);