File: optimsimplex_new.tst

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (152 lines) | stat: -rw-r--r-- 3,723 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008-2009 - INRIA - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt


// <-- JVM NOT MANDATORY -->


//
// assert_close --
//   Returns 1 if the two real matrices computed and expected are close,
//   i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
//   computed, expected : the two matrices to compare
//   epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
  if expected==0.0 then
    shift = norm(computed-expected);
  else
    shift = norm(computed-expected)/norm(expected);
  end
  if shift < epsilon then
    flag = 1;
  else
    flag = 0;
  end
  if flag <> 1 then pause,end
endfunction
//
// assert_equal --
//   Returns 1 if the two real matrices computed and expected are equal.
// Arguments
//   computed, expected : the two matrices to compare
//   epsilon : a small number
//
function flag = assert_equal ( computed , expected )
  if computed==expected then
    flag = 1;
  else
    flag = 0;
  end
  if flag <> 1 then pause,end
endfunction
function y = rosenbrock (x)
  y = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
endfunction

//
// Test optimsimplex_new with a matrix of coordinates
//
coords = [
    0.    0.  
    1.    0.  
    0.    1.  
];
s1 = optimsimplex_new ( coords );
computed = optimsimplex_getallx ( s1 );
expected = [
    0.    0.  
    1.    0.  
    0.    1.  
];
assert_equal ( computed , expected );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 3 );
s1 = optimsimplex_destroy(s1);

//
// Test optimsimplex_new with a matrix of coordinates and 
// a function
//
coords = [
    0.    0.  
    1.    0.  
    0.    1.  
];
s1 = optimsimplex_new ( coords , rosenbrock );
computed = optimsimplex_getall ( s1 );
expected = [
    1.      0.    0.  
    100.    1.    0.  
    101.    0.    1.  
];
assert_equal ( computed , expected );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 3 );
s1 = optimsimplex_destroy(s1);

//
// Test with a function which has an additional argument
//
myobj = tlist(["T_MYSTUFF","nb"]);
myobj.nb = 0;
function [ y , myobj ] = mycostf ( x , myobj )
  y = rosenbrock(x);
  myobj.nb = myobj.nb + 1
endfunction
coords = [
    0.    0.  
    1.    0.  
    0.    1.  
];
[ s1 , myobj ] = optimsimplex_new ( coords , mycostf , myobj );
computed = optimsimplex_getall ( s1 );
expected = [
    1.      0.    0.  
    100.    1.    0.  
    101.    0.    1.  
];
assert_equal ( computed , expected );
assert_equal ( myobj.nb , 3 );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 3 );
s1 = optimsimplex_destroy ( s1 );
//
// Test optimsimplex_new with a matrix of coordinates made of k=5 vertices
//
coords = [
    0.    0.  
    1.    0.  
    0.    1.  
    1.    1.  
    2.    2.  
];
s1 = optimsimplex_new ( coords , rosenbrock );
computed = optimsimplex_getall ( s1 );
expected = [
    1.      0.    0.  
    100.    1.    0.  
    101.    0.    1.  
    0.      1.    1.  
    401.    2.    2.  
];
assert_equal ( computed , expected );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 5 );
s1 = optimsimplex_destroy(s1);