1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008-2009 - INRIA - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// <-- JVM NOT MANDATORY -->
//
// assert_close --
// Returns 1 if the two real matrices computed and expected are close,
// i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
if expected==0.0 then
shift = norm(computed-expected);
else
shift = norm(computed-expected)/norm(expected);
end
if shift < epsilon then
flag = 1;
else
flag = 0;
end
if flag <> 1 then pause,end
endfunction
//
// assert_equal --
// Returns 1 if the two real matrices computed and expected are equal.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_equal ( computed , expected )
if computed==expected then
flag = 1;
else
flag = 0;
end
if flag <> 1 then pause,end
endfunction
function y = rosenbrock (x)
y = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
endfunction
//
// Test optimsimplex_new with a matrix of coordinates
//
coords = [
0. 0.
1. 0.
0. 1.
];
s1 = optimsimplex_new ( coords );
computed = optimsimplex_getallx ( s1 );
expected = [
0. 0.
1. 0.
0. 1.
];
assert_equal ( computed , expected );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 3 );
s1 = optimsimplex_destroy(s1);
//
// Test optimsimplex_new with a matrix of coordinates and
// a function
//
coords = [
0. 0.
1. 0.
0. 1.
];
s1 = optimsimplex_new ( coords , rosenbrock );
computed = optimsimplex_getall ( s1 );
expected = [
1. 0. 0.
100. 1. 0.
101. 0. 1.
];
assert_equal ( computed , expected );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 3 );
s1 = optimsimplex_destroy(s1);
//
// Test with a function which has an additional argument
//
myobj = tlist(["T_MYSTUFF","nb"]);
myobj.nb = 0;
function [ y , myobj ] = mycostf ( x , myobj )
y = rosenbrock(x);
myobj.nb = myobj.nb + 1
endfunction
coords = [
0. 0.
1. 0.
0. 1.
];
[ s1 , myobj ] = optimsimplex_new ( coords , mycostf , myobj );
computed = optimsimplex_getall ( s1 );
expected = [
1. 0. 0.
100. 1. 0.
101. 0. 1.
];
assert_equal ( computed , expected );
assert_equal ( myobj.nb , 3 );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 3 );
s1 = optimsimplex_destroy ( s1 );
//
// Test optimsimplex_new with a matrix of coordinates made of k=5 vertices
//
coords = [
0. 0.
1. 0.
0. 1.
1. 1.
2. 2.
];
s1 = optimsimplex_new ( coords , rosenbrock );
computed = optimsimplex_getall ( s1 );
expected = [
1. 0. 0.
100. 1. 0.
101. 0. 1.
0. 1. 1.
401. 2. 2.
];
assert_equal ( computed , expected );
computed = optimsimplex_getn(s1);
assert_equal ( computed , 2 );
computed = optimsimplex_getnbve (s1);
assert_equal ( computed , 5 );
s1 = optimsimplex_destroy(s1);
|