1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2008-2009 - INRIA - Michael Baudin
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
// assert_close --
// Returns 1 if the two real matrices computed and expected are close,
// i.e. if the relative distance between computed and expected is lesser than epsilon.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_close ( computed, expected, epsilon )
if expected==0.0 then
shift = norm(computed-expected);
else
shift = norm(computed-expected)/norm(expected);
end
if shift < epsilon then
flag = 1;
else
flag = 0;
end
if flag <> 1 then bugmes();quit;end
endfunction
//
// assert_equal --
// Returns 1 if the two real matrices computed and expected are equal.
// Arguments
// computed, expected : the two matrices to compare
// epsilon : a small number
//
function flag = assert_equal ( computed , expected )
if computed==expected then
flag = 1;
else
flag = 0;
end
if flag <> 1 then bugmes();quit;end
endfunction
function y = rosenbrock (x)
y = 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
endfunction
//
// Test print with all data here.
//
simplex = [...
0. 0.
1. 0.
0. 2.
];
s1 = optimsimplex_new ();
s1 = optimsimplex_setn ( s1 , 2 );
s1 = optimsimplex_setnbve ( s1 , 3 );
s1 = optimsimplex_setallx ( s1 , simplex );
s1 = optimsimplex_setallfv ( s1 , [12.0 13.0 14.0]' );
optimsimplex_print ( s1 );
Dimension : 2
Number of vertices : 3
Vertex #1/3 : fv=1.200000e+01, x=0.000000e+00 0.000000e+00
Vertex #2/3 : fv=1.300000e+01, x=1.000000e+00 0.000000e+00
Vertex #3/3 : fv=1.400000e+01, x=0.000000e+00 2.000000e+00
s1 = optimsimplex_destroy ( s1 );
//
// Test print with no data
//
s1 = optimsimplex_new ();
optimsimplex_print ( s1 );
Empty simplex (zero dimension)
s1 = optimsimplex_destroy ( s1 );
//
// Test print with n set, but no data
//
s1 = optimsimplex_new ();
s1 = optimsimplex_setn ( s1 , 2 );
optimsimplex_print ( s1 );
Empty simplex (zero vertices)
s1 = optimsimplex_destroy ( s1 );
//
// Test print with n set, x set, but no function values
//
s1 = optimsimplex_new ();
s1 = optimsimplex_setn ( s1 , 2 );
s1 = optimsimplex_setnbve ( s1 , 3 );
s1 = optimsimplex_setallx ( s1 , simplex );
optimsimplex_print ( s1 );
Empty simplex (zero function values)
s1 = optimsimplex_destroy ( s1 );
|