File: determ.sci

package info (click to toggle)
scilab 5.2.2-9
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 334,832 kB
  • ctags: 52,586
  • sloc: xml: 526,945; ansic: 223,590; fortran: 163,080; java: 56,934; cpp: 33,840; tcl: 27,936; sh: 20,397; makefile: 9,908; ml: 9,451; perl: 1,323; cs: 614; lisp: 30
file content (110 lines) | stat: -rw-r--r-- 2,594 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) ????-2008 - INRIA - Francois DELBECQUE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution.  The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt


function res=determ(W,k)

// determinant of a polynomial or rational matrix by FFT
// W=square polynomial matrix
// k=``predicted'' degree of the determinant of W i.e. k is
// an integer larger or equal to the actual degree of W.
// Method: evaluate the determinant of W for the Fourier frequencies
// and apply inverse fft to the coefficients of the determinant.
// See also detr
  
  if and(typeof(W)<>['rational','polynomial','constant']) then
    error(msprintf(gettext("%s: Wrong type for input argument #%d: A floating point number or polynomial or rational fraction array expected.\n"),"determ",1))
  end
  if size(W,1)<>size(W,2) then
     error(msprintf(gettext("%s: Wrong size for input argument #%d: A square matrix expected.\n"),"determ",1))
  end

  if W==[] then
    res=1;
    return;
  end;


  n1=size(W,1)

  // small cases

  if n1==1 then
    res=W;
    return;
  elseif n1==2 then
    res = W(1,1)*W(2,2) - W(1,2)*W(2,1);
    return;
  end

  //upper bound of the determinant degree

  maj = n1*maxi(degree(W))+1;

  if argn(2)==1 then
    k=1;
    while k < maj,
      k=2*k;
    end
  end

  if n1>8 then
    mprintf(gettext("Computing determinant: Be patient...\n"));
  end

  // Default Values
  e=0*ones(k,1);
  e(2)=1;

  // Paramtres de clean
  epsa=1.d-10;
  epsr=0;//no relative rounding

  if k==1 then
    ksi=1;
  else
    ksi=fft(e,-1);
  end

  fi=[];

  if ~isreal(W,0) then
    // Cas Complexe
    for kk=1:k,
      fi=[fi,det(horner(W,ksi(kk)))];
    end
    Temp0 = poly(fft(fi,1),varn(W),'c');
    Temp1 = clean(real(Temp0),epsa,epsr)+%i*clean(imag(Temp0),epsa,epsr);

  else
    // Cas Rel
    for kk=1:k,fi=[fi,det(freq(W,ones(W),ksi(kk)))];end
    Temp1 = clean(real(poly(fft(fi,1),varn(W),'c')),epsa,epsr);
  end

  if argn(2)==1 then

    // Cas o k est dfini dans les paramtres d'entre.
    // On va maintenant annuler tous les coefficients
    // dont le degr est suprieur  maj

    Temp2 = coeff(Temp1);
    for i=1:maj,
      Temp2(i) = 0;
    end
    res = Temp1 - poly(Temp2,varn(W),"coeff");
    return;

  else
    // Cas o k n'est pas dfini dans les paramtres d'entre
    res = Temp1;
    return;
  end

endfunction