1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
// Scilab ( http://www.scilab.org/ ) - This file is part of Scilab
// Copyright (C) 2009 - INRIA - Michael Baudin
// Copyright (C) 2008 - INRIA - Michael Baudin
// Copyright (C) 2006 - INRIA - Serge Steer
// Copyright (C) 2005 - IRISA - Sage Group
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
//
// pcg --
// PCG solves the symmetric positive definite linear system %Ax=b
// using the Preconditionned Conjugate Gradient.
// If M is given, it is used as a preconditionning matrix.
// If both M and M2 are given, the matrix M * M2 is used as a preconditionning
// matrix.
//
// input %A REAL symmetric positive definite matrix or a function
// y=Ax(x) which computes y=%A*x for a given x
// b REAL right hand side vector
// tol, optional REAL error tolerance (default: 1e-8)
// maxIter, optional INTEGER maximum number of iterations (default: size(%b))
// %M, optional REAL preconditioner matrix (default: none)
// %M2, optional REAL preconditioner matrix (default: none)
// x0, optional REAL initial guess vector (default: the zero vector)
// verbose, optional INTEGER set to 1 to enable verbose logging (default : 0)
//
// output x REAL solution vector
// flag INTEGER: 0 = solution found to tolerance
// 1 = no convergence given maxIter
// resNorm REAL final relative norm of the residual
// iter INTEGER number of iterations performed
// resVec REAL residual vector
//
// References
//
// "Templates for the Solution of Linear Systems: Building Blocks
// for Iterative Methods",
// Barrett, Berry, Chan, Demmel, Donato, Dongarra, Eijkhout,
// Pozo, Romine, and Van der Vorst, SIAM Publications, 1993
// (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).
//
// "Iterative Methods for Sparse Linear Systems, Second Edition"
// Saad, SIAM Publications, 2003
// (ftp ftp.cs.umn.edu; cd dept/users/saad/PS; get all_ps.zip).
//
// Golub and Van Loan, Matrix Computations
//
// Notes
// This script was originally a matlab > scilab translation of the cg.m
// script from http://www.netlib.org/templates/matlab
//
// The input / output arguments of this command are the same as
// Matlab's pcg command.
//
function [x, flag, resNorm, iter, resVec] = pcg(%A, %b, tol, maxIter, %M, %M2, x0, verbose )
[lhs,rhs] = argn(0);
if (rhs < 2),
error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"pcg",2,7));
end
if (rhs > 7),
error(msprintf(gettext("%s: Wrong number of input arguments: %d to %d expected.\n"),"pcg",2,7));
end
if exists('tol','local')==0 then
tol = 1e-8
end
if exists('maxIter','local')==0 then
maxIter = size(%b,1)
end
if exists('%M','local')==0 then
%M=[]
end
if exists('%M2','local')==0 then
%M2=[]
end
if exists('x0','local')==0 then
x0=zeros(%b);
end
if exists('verbose','local')==0 then
verbose=0;
end
if (verbose==1) then
printf(gettext("Arguments:\n"));
printf(" tol="+string(tol)+"\n");
printf(" maxIter="+string(maxIter)+"\n");
printf(" M=\n")
disp(%M)
printf(" M2=\n");
disp(%M2)
printf(" x0=\n");
disp(x0)
printf(" verbose="+string(verbose)+"\n");
end
// Compute matrixType
select type(%A)
case 1 then
matrixType = 1;
case 5 then
matrixType = 1;
case 13 then
matrixType = 0;
Aargs=list()
case 15 then
Aargs=list(%A(2:$))
// Caution : modify the input argument %A !
%A=%A(1);
matrixType = 0;
else
error(msprintf(gettext("%s: Wrong type for input argument #%d.\n"),"pcg",1));
end
// If %A is a matrix (dense or sparse)
if (matrixType == 1),
if (size(%A,1) ~= size(%A,2)),
error(msprintf(gettext("%s: Wrong type for input argument #%d: Square matrix expected.\n"),"pcg",1));
end
end
// Check right hand side %b
if (size(%b,2) ~= 1),
error(msprintf(gettext("%s: Wrong type for input argument #%d: Column vector expected.\n"),"pcg",2));
end
if (matrixType ==1),
if (size(%b,1) ~= size(%A,1)),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"pcg",2,1));
end
end
// Check type of the error tolerance tol
if or(size(tol) ~= [1 1]) then
error(msprintf(gettext("%s: Wrong type for input argument #%d: Scalar expected.\n"),"pcg",3));
end
// Check the type of maximum number of iterations maxIter
if or(size(maxIter) ~= [1 1]) then
error(msprintf(gettext("%s: Wrong type for input argument #%d: Scalar expected.\n"),"pcg",4));
end
// Compute precondType
select type(%M)
case 1 then
// M is a matrix
// precondType = 0 if the M is empty
// = 1 if the M is not empty
precondType = bool2s(size(%M,'*')>=1);
case 5 then
precondType = 1;
case 13 then
Margs=list()
precondType = 2;
case 15 then
Margs=list(%M(2:$))
// Caution : modify the input argument %M !
%M=%M(1);
precondType = 2;
else
error(msprintf(gettext("%s: Wrong type for input argument #%d.\n"),"pcg",5));
end
if (precondType == 1),
if (size(%M,1) ~= size(%M,2)),
error(msprintf(gettext("%s: Wrong type for input argument #%d: Square matrix expected.\n"),"pcg",5));
end
if ( size(%M,1) ~= size(%b,1) ),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"pcg",5,2));
end
end
// Compute precondBis
select type(%M2)
case 1 then
// M2 is a matrix
// precondBis = 0 if the M2 is empty
// = 1 if the M2 is not empty
precondBis =bool2s(size(%M2,'*')>=1);
case 5 then
precondBis = 1;
case 13 then
M2args=list()
precondBis = 2;
case 15 then
M2args=list(%M2(2:$))
// Caution : modify the input argument %M2 !
%M2=%M2(1);
// Caution : modify precondType again !
precondType = 2;
else
error(msprintf(gettext("%s: Wrong type for input argument #%d.\n"),"pcg",6));
end
if (precondBis == 1),
if (size(%M2,1) ~= size(%M2,2)),
error(msprintf(gettext("%s: Wrong type for input argument #%d: Square matrix expected.\n"),"pcg",6));
end
if ( size(%M2,1) ~= size(%b,1) ),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"pcg",6,2));
end
end
// Check size of the initial vector x0
if (size(x0,2) ~= 1),
error(msprintf(gettext("%s: Wrong value for input argument #%d: Column vector expected.\n"),"pcg",7));
end
if (size(x0,1) ~= size(%b,1)),
error(msprintf(gettext("%s: Wrong size for input argument #%d: Same size as input argument #%d expected.\n"),"pcg",7,2));
end
// ------------
// Computations
// ------------
// initialization
bnrm2 = norm(%b);
if (verbose==1) then
printf(gettext("Norm of right-hand side : %s\n"), string(bnrm2));
end
if (bnrm2 == 0) then
if (verbose==1) then
printf(gettext("Special processing where the right-hand side is zero.\n"));
end
// When rhs is 0, there is a trivial solution : x=0
x = zeros(%b);
resNorm = 0;
resVec = resNorm;
else
x = x0;
// r = %b - %A*x;
if (matrixType ==1),
r = %b - %A*x;
else
r = %b - %A(x,Aargs(:));
end
resNorm = norm(r) / bnrm2;
resVec = resNorm;
end
if (verbose==1) then
printf(gettext(" Type of preconditionning #1 : %d\n"),precondType);
printf(gettext(" Type of preconditionning #2 : %d\n"),precondBis);
end
// begin iteration
// Distinguish the number of iterations processed from the currentiter index
iter = 0
for currentiter = 1:maxIter
if (resNorm <= tol) then
if (verbose==1) then
printf(gettext(" New residual = %s < tol = %s => break\n"),string(resNorm),string(tol));
end
break;
end
iter = iter + 1
if (verbose==1) then
printf(gettext(" Iteration #%s/%s residual : %s\n"),string(currentiter),string(maxIter),string(resNorm));
printf(" x=\n");
disp(x);
end
if %M == [] & %M2 == [] then
z = r;
elseif %M2 == [] then
// Compute z so that M z = r
if (precondType == 1) then
z = %M \ r;
elseif (precondType == 2) then
z = %M(r,Margs(:));
else
z = r;
end
else
// Compute z so that M M2 z = r
if (precondBis == 1) then
z = %M \ r;
z = %M2 \ z;
elseif (precondBis == 2) then
z = %M(r,Margs(:));
z = %M2(z,M2args(:));
else
z = r;
end
end
rho = r'*z;
if (currentiter > 1) then
bet = rho / rho_old;
p = z + bet*p;
else
p = z;
end
// q = %A*p;
if (matrixType ==1),
q = %A*p;
else
q = %A(p);
end
alp = rho / (p'*q );
x = x + alp*p;
r = r - alp*q;
resNorm = norm(r) / bnrm2;
// Caution : transform the scalar resVec into vector resVec !
resVec = [resVec;resNorm];
rho_old = rho;
end
// test for convergence
if (resNorm > tol) then
if (verbose==1) then
printf(gettext("Final residual = %s > tol =%s\n"),string(resNorm),string(tol));
printf(gettext("Algorithm fails\n"));
end
flag = 1;
if (lhs < 2) then
warning(msprintf(gettext("%s: Convergence error.\n"),"pcg"));
end
else
flag = 0;
if (verbose==1) then
printf(gettext("Algorithm pass\n"));
end
end
endfunction
|