File: test_nan_policy_array_22360.patch

package info (click to toggle)
scipy 1.15.3-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 232,648 kB
  • sloc: cpp: 497,140; python: 327,782; ansic: 190,592; javascript: 89,553; fortran: 59,012; cs: 3,081; f90: 1,150; sh: 839; makefile: 780; pascal: 277; csh: 135; lisp: 134; xml: 56; perl: 51
file content (149 lines) | stat: -rw-r--r-- 6,672 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
Index: scipy/scipy/stats/tests/test_axis_nan_policy.py
===================================================================
--- scipy.orig/scipy/stats/tests/test_axis_nan_policy.py	2025-01-21 12:40:26.637357722 +0100
+++ scipy/scipy/stats/tests/test_axis_nan_policy.py	2025-01-21 12:48:43.012564773 +0100
@@ -466,6 +466,144 @@
 
     assert_allclose(res_nd, res_1d, rtol=1e-14)
 
+    """
+    test_axis_nan_policy_axis_is_None fails with [mixed-*-xp*] on mips64el
+    see https://github.com/scipy/scipy/issues/22360
+
+    The following set of tests tries various permutations of the array
+    aiming to help diagnose the problem.
+    """
+def test_nan_array_asany():
+    import warnings
+    from scipy._lib.array_api_compat import numpy as np
+    nan = np.nan
+    arr = np.asanyarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=None)
+
+def test_nan_array_asarray():
+    import warnings
+    from scipy._lib.array_api_compat import numpy as np
+    nan = np.nan
+    arr = np.asarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=None)
+
+def test_nan_array_asany_numpy():
+    import warnings
+    import numpy as np
+    nan = np.nan
+    arr = np.asanyarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=None)
+
+def test_nan_array_asarray_numpy():
+    import warnings
+    import numpy as np
+    nan = np.nan
+    arr = np.asarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=None)
+
+def test_nan_array_asany_axis0():
+    import warnings
+    from scipy._lib.array_api_compat import numpy as np
+    nan = np.nan
+    arr = np.asanyarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=0)
+
+def test_nan_array_asarray_axis0():
+    import warnings
+    from scipy._lib.array_api_compat import numpy as np
+    nan = np.nan
+    arr = np.asarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=0)
+
+def test_nan_array_asany_numpy_axis0():
+    import warnings
+    import numpy as np
+    nan = np.nan
+    arr = np.asanyarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=0)
+
+def test_nan_array_asarray_numpy_axis0():
+    import warnings
+    import numpy as np
+    nan = np.nan
+    arr = np.asarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr, axis=0)
+
+def test_nan_array_asany_axis_default():
+    import warnings
+    from scipy._lib.array_api_compat import numpy as np
+    nan = np.nan
+    arr = np.asanyarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr)
+
+def test_nan_array_asarray_axis_default():
+    import warnings
+    from scipy._lib.array_api_compat import numpy as np
+    nan = np.nan
+    arr = np.asarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr)
+
+def test_nan_array_asany_numpy_axis_default():
+    import warnings
+    import numpy as np
+    nan = np.nan
+    arr = np.asanyarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr)
+
+def test_nan_array_asarray_numpy_axis_default():
+    import warnings
+    import numpy as np
+    nan = np.nan
+    arr = np.asarray([0.63696169, 0.26978671, 0.04097352, 0.01652764, 0.81327024,
+                         0.91275558, 0.60663578, 0.72949656, 0.543624, nan, 0.13509651,
+                         nan, 0.52535432, 0.31024188, 0.48583536, nan, nan, 0.3577952 ])
+    with warnings.catch_warnings():
+        warnings.simplefilter('error')
+        np.mean(arr)
 
 @pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
                           "paired", "unpacker"), axis_nan_policy_cases)