1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Barycentric Rational Interpolation</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../interpolation.html" title="Chapter 13. Interpolation">
<link rel="prev" href="whittaker_shannon.html" title="Whittaker-Shannon interpolation">
<link rel="next" href="vector_barycentric.html" title="Vector-valued Barycentric Rational Interpolation">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="whittaker_shannon.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="vector_barycentric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.barycentric"></a><a class="link" href="barycentric.html" title="Barycentric Rational Interpolation">Barycentric Rational Interpolation</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.barycentric.h0"></a>
<span class="phrase"><a name="math_toolkit.barycentric.synopsis"></a></span><a class="link" href="barycentric.html#math_toolkit.barycentric.synopsis">Synopsis</a>
</h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">interpolators</span><span class="special">/</span><span class="identifier">barycentric_rational</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">interpolators</span><span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">barycentric_rational</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">InputIterator1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">InputIterator2</span><span class="special">></span>
<span class="identifier">barycentric_rational</span><span class="special">(</span><span class="identifier">InputIterator1</span> <span class="identifier">start_x</span><span class="special">,</span> <span class="identifier">InputIterator1</span> <span class="identifier">end_x</span><span class="special">,</span> <span class="identifier">InputIterator2</span> <span class="identifier">start_y</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">approximation_order</span> <span class="special">=</span> <span class="number">3</span><span class="special">);</span>
<span class="identifier">barycentric_rational</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>&&</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>&&</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">order</span> <span class="special">=</span> <span class="number">3</span><span class="special">);</span>
<span class="identifier">barycentric_rational</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span><span class="special">*</span> <span class="keyword">const</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">Real</span><span class="special">*</span> <span class="keyword">const</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">size_t</span> <span class="identifier">approximation_order</span> <span class="special">=</span> <span class="number">3</span><span class="special">);</span>
<span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">Real</span> <span class="identifier">prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>&&</span> <span class="identifier">return_x</span><span class="special">();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>&&</span> <span class="identifier">return_y</span><span class="special">();</span>
<span class="special">};</span>
<span class="special">}}}</span>
</pre>
<h4>
<a name="math_toolkit.barycentric.h1"></a>
<span class="phrase"><a name="math_toolkit.barycentric.description"></a></span><a class="link" href="barycentric.html#math_toolkit.barycentric.description">Description</a>
</h4>
<p>
Barycentric rational interpolation is a high-accuracy interpolation method
for non-uniformly spaced samples. It requires 𝑶(<span class="emphasis"><em>N</em></span>) time
for construction, and 𝑶(<span class="emphasis"><em>N</em></span>) time for each evaluation. Linear
time evaluation is not optimal; for instance the cubic B-spline can be evaluated
in constant time. However, using the cubic B-spline requires uniformly-spaced
samples, which are not always available.
</p>
<p>
Use of the class requires a vector of independent variables <code class="computeroutput"><span class="identifier">x</span><span class="special">[</span><span class="number">0</span><span class="special">]</span></code>,
<code class="computeroutput"><span class="identifier">x</span><span class="special">[</span><span class="number">1</span><span class="special">]</span></code>, .... <code class="computeroutput"><span class="identifier">x</span><span class="special">[</span><span class="identifier">n</span><span class="special">-</span><span class="number">1</span><span class="special">]</span></code>
where <code class="computeroutput"><span class="identifier">x</span><span class="special">[</span><span class="identifier">i</span><span class="special">+</span><span class="number">1</span><span class="special">]</span> <span class="special">></span> <span class="identifier">x</span><span class="special">[</span><span class="identifier">i</span><span class="special">]</span></code>,
and a vector of dependent variables <code class="computeroutput"><span class="identifier">y</span><span class="special">[</span><span class="number">0</span><span class="special">]</span></code>,
<code class="computeroutput"><span class="identifier">y</span><span class="special">[</span><span class="number">1</span><span class="special">]</span></code>, ... , <code class="computeroutput"><span class="identifier">y</span><span class="special">[</span><span class="identifier">n</span><span class="special">-</span><span class="number">1</span><span class="special">]</span></code>.
The call is trivial:
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">x</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">y</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
<span class="comment">// populate x, y, then:</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">interpolators</span><span class="special">::</span><span class="identifier">barycentric_rational</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">interpolant</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">y</span><span class="special">));</span>
</pre>
<p>
This implicitly calls the constructor with approximation order 3, and hence
the accuracy is 𝑶(<span class="emphasis"><em>h</em></span><sup>4</sup>). In general, if you require an approximation
order <span class="emphasis"><em>d</em></span>, then the error is 𝑶(<span class="emphasis"><em>h</em></span><sup><span class="emphasis"><em>d</em></span>+1</sup>).
A call to the constructor with an explicit approximation order is demonstrated
below
</p>
<pre class="programlisting"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">interpolators</span><span class="special">::</span><span class="identifier">barycentric_rational</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">interpolant</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">x</span><span class="special">),</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">y</span><span class="special">),</span> <span class="number">5</span><span class="special">);</span>
</pre>
<p>
To evaluate the interpolant, simply use
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="number">2.3</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">interpolant</span><span class="special">(</span><span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
and to evaluate its derivative use
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">interpolant</span><span class="special">.</span><span class="identifier">prime</span><span class="special">(</span><span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
If you no longer require the interpolant, then you can get your data back:
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">xs</span> <span class="special">=</span> <span class="identifier">interpolant</span><span class="special">.</span><span class="identifier">return_x</span><span class="special">();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">ys</span> <span class="special">=</span> <span class="identifier">interpolant</span><span class="special">.</span><span class="identifier">return_y</span><span class="special">();</span>
</pre>
<p>
Be aware that once you return your data, the interpolant is <span class="bold"><strong>dead</strong></span>.
</p>
<h4>
<a name="math_toolkit.barycentric.h2"></a>
<span class="phrase"><a name="math_toolkit.barycentric.caveats"></a></span><a class="link" href="barycentric.html#math_toolkit.barycentric.caveats">Caveats</a>
</h4>
<p>
Although this algorithm is robust, it can surprise you. The main way this occurs
is if the sample spacing at the endpoints is much larger than the spacing in
the center. This is to be expected; all interpolants perform better in the
opposite regime, where samples are clustered at the endpoints and somewhat
uniformly spaced throughout the center.
</p>
<p>
A desirable property of any interpolator <span class="emphasis"><em>f</em></span> is that for
all <span class="emphasis"><em>x</em></span><sub>min</sub> ≤ <span class="emphasis"><em>x</em></span> ≤ <span class="emphasis"><em>x</em></span><sub>max</sub>,
also <span class="emphasis"><em>y</em></span><sub>min</sub> ≤ <span class="emphasis"><em>f</em></span>(<span class="emphasis"><em>x</em></span>)
≤ <span class="emphasis"><em>y</em></span><sub>max</sub>.
</p>
<p>
<span class="emphasis"><em>This property does not hold for the barycentric rational interpolator.</em></span>
However, unless you deliberately try to antagonize this interpolator (by, for
instance, placing the final value far from all the rest), you will probably
not fall victim to this problem.
</p>
<p>
The reference used for implementation of this algorithm is <a href="https://web.archive.org/save/_embed/http://www.mn.uio.no/math/english/people/aca/michaelf/papers/rational.pdf" target="_top">Barycentric
rational interpolation with no poles and a high rate of interpolation</a>,
and the evaluation of the derivative is given by <a href="http://www.ams.org/journals/mcom/1986-47-175/S0025-5718-1986-0842136-8/S0025-5718-1986-0842136-8.pdf" target="_top">Some
New Aspects of Rational Interpolation</a>.
</p>
<h4>
<a name="math_toolkit.barycentric.h3"></a>
<span class="phrase"><a name="math_toolkit.barycentric.examples"></a></span><a class="link" href="barycentric.html#math_toolkit.barycentric.examples">Examples</a>
</h4>
<p>
This example shows how to use barycentric rational interpolation, using Walter
Kohn's classic paper "Solution of the Schrodinger Equation in Periodic
Lattices with an Application to Metallic Lithium" In this paper, Kohn
needs to repeatedly solve an ODE (the radial Schrodinger equation) given a
potential which is only known at non-equally samples data.
</p>
<p>
If he'd only had the barycentric rational interpolant of Boost.Math!
</p>
<p>
References: Kohn, W., and N. Rostoker. "Solution of the Schrodinger equation
in periodic lattices with an application to metallic lithium." Physical
Review 94.5 (1954): 1111.
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">interpolators</span><span class="special">/</span><span class="identifier">barycentric_rational</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// The lithium potential is given in Kohn's paper, Table I:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">r</span><span class="special">(</span><span class="number">45</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">mrV</span><span class="special">(</span><span class="number">45</span><span class="special">);</span>
<span class="comment">// We'll skip the code for filling the above vectors with data for now...</span>
<span class="comment">// Now we want to interpolate this potential at any r:</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">interpolators</span><span class="special">::</span><span class="identifier">barycentric_rational</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">r</span><span class="special">.</span><span class="identifier">data</span><span class="special">(),</span> <span class="identifier">mrV</span><span class="special">.</span><span class="identifier">data</span><span class="special">(),</span> <span class="identifier">r</span><span class="special">.</span><span class="identifier">size</span><span class="special">());</span>
<span class="keyword">for</span> <span class="special">(</span><span class="identifier">size_t</span> <span class="identifier">i</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span> <span class="identifier">i</span> <span class="special"><</span> <span class="number">8</span><span class="special">;</span> <span class="special">++</span><span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">i</span><span class="special">*</span><span class="number">0.5</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"(r, V) = ("</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="string">", "</span> <span class="special"><<</span> <span class="special">-</span><span class="identifier">b</span><span class="special">(</span><span class="identifier">r</span><span class="special">)/</span><span class="identifier">r</span> <span class="special"><<</span> <span class="string">")\n"</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">}</span>
</pre>
<p>
This further example shows how to use the iterator based constructor, and then
uses the function object in our root finding algorithms to locate the points
where the potential achieves a specific value.
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">interpolators</span><span class="special">/</span><span class="identifier">barycentric_rational</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">range</span><span class="special">/</span><span class="identifier">adaptors</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">roots</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">int</span> <span class="identifier">main</span><span class="special">()</span>
<span class="special">{</span>
<span class="comment">// The lithium potential is given in Kohn's paper, Table I.</span>
<span class="comment">// (We could equally easily use an unordered_map, a list of tuples or pairs, or a 2-dimensional array).</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">map</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="keyword">double</span><span class="special">></span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.02</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.727</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.04</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.544</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.06</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.450</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.08</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.351</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.10</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.253</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.12</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.157</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.14</span><span class="special">]</span> <span class="special">=</span> <span class="number">5.058</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.16</span><span class="special">]</span> <span class="special">=</span> <span class="number">4.960</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.18</span><span class="special">]</span> <span class="special">=</span> <span class="number">4.862</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.20</span><span class="special">]</span> <span class="special">=</span> <span class="number">4.762</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.24</span><span class="special">]</span> <span class="special">=</span> <span class="number">4.563</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.28</span><span class="special">]</span> <span class="special">=</span> <span class="number">4.360</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.32</span><span class="special">]</span> <span class="special">=</span> <span class="number">4.1584</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.36</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.9463</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.40</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.7360</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.44</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.5429</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.48</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.3797</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.52</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.2417</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.56</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.1209</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.60</span><span class="special">]</span> <span class="special">=</span> <span class="number">3.0138</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.68</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.8342</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.76</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.6881</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.84</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.5662</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">0.92</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.4242</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.00</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.3766</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.08</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.3058</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.16</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.2458</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.24</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.2035</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.32</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.1661</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.40</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.1350</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.48</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.1090</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.64</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0697</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.80</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0466</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">1.96</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0325</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">2.12</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0288</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">2.28</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0292</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">2.44</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0228</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">2.60</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0124</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">2.76</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0065</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">2.92</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0031</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">3.08</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0015</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">3.24</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0008</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">3.40</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0004</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">3.56</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0002</span><span class="special">;</span>
<span class="identifier">r</span><span class="special">[</span><span class="number">3.72</span><span class="special">]</span> <span class="special">=</span> <span class="number">2.0001</span><span class="special">;</span>
<span class="comment">// Let's discover the abscissa that will generate a potential of exactly 3.0,</span>
<span class="comment">// start by creating 2 ranges for the x and y values:</span>
<span class="keyword">auto</span> <span class="identifier">x_range</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">adaptors</span><span class="special">::</span><span class="identifier">keys</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="keyword">auto</span> <span class="identifier">y_range</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">adaptors</span><span class="special">::</span><span class="identifier">values</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">interpolators</span><span class="special">::</span><span class="identifier">barycentric_rational</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">x_range</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">x_range</span><span class="special">.</span><span class="identifier">end</span><span class="special">(),</span> <span class="identifier">y_range</span><span class="special">.</span><span class="identifier">begin</span><span class="special">());</span>
<span class="comment">//</span>
<span class="comment">// We'll use a lambda expression to provide the functor to our root finder, since we want</span>
<span class="comment">// the abscissa value that yields 3, not zero. We pass the functor b by value to the</span>
<span class="comment">// lambda expression since barycentric_rational is trivial to copy.</span>
<span class="comment">// Here we're using simple bisection to find the root:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">iterations</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">>::</span><span class="identifier">max</span><span class="special">)();</span>
<span class="keyword">double</span> <span class="identifier">abscissa_3</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">bisect</span><span class="special">([=](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">-</span> <span class="number">3</span><span class="special">;</span> <span class="special">},</span> <span class="number">0.44</span><span class="special">,</span> <span class="number">1.24</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">eps_tolerance</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(),</span> <span class="identifier">iterations</span><span class="special">).</span><span class="identifier">first</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Abscissa value that yields a potential of 3 = "</span> <span class="special"><<</span> <span class="identifier">abscissa_3</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Root was found in "</span> <span class="special"><<</span> <span class="identifier">iterations</span> <span class="special"><<</span> <span class="string">" iterations."</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">//</span>
<span class="comment">// However, we have a more efficient root finding algorithm than simple bisection:</span>
<span class="identifier">iterations</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">>::</span><span class="identifier">max</span><span class="special">)();</span>
<span class="identifier">abscissa_3</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">bracket_and_solve_root</span><span class="special">([=](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">x</span><span class="special">)</span> <span class="special">-</span> <span class="number">3</span><span class="special">;</span> <span class="special">},</span> <span class="number">0.6</span><span class="special">,</span> <span class="number">1.2</span><span class="special">,</span> <span class="keyword">false</span><span class="special">,</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">eps_tolerance</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(),</span> <span class="identifier">iterations</span><span class="special">).</span><span class="identifier">first</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Abscissa value that yields a potential of 3 = "</span> <span class="special"><<</span> <span class="identifier">abscissa_3</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Root was found in "</span> <span class="special"><<</span> <span class="identifier">iterations</span> <span class="special"><<</span> <span class="string">" iterations."</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<pre class="programlisting"><span class="identifier">Program</span> <span class="identifier">output</span> <span class="identifier">is</span><span class="special">:</span>
</pre>
<pre class="programlisting">Abscissa value that yields a potential of 3 = 0.604728
Root was found in 54 iterations.
Abscissa value that yields a potential of 3 = 0.604728
Root was found in 10 iterations.
</pre>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="whittaker_shannon.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="vector_barycentric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|