1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Bezier Polynomials</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../interpolation.html" title="Chapter 13. Interpolation">
<link rel="prev" href="catmull_rom.html" title="Catmull-Rom Splines">
<link rel="next" href="cardinal_trigonometric.html" title="Cardinal Trigonometric interpolation">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="catmull_rom.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_trigonometric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.bezier_polynomial"></a><a class="link" href="bezier_polynomial.html" title="Bezier Polynomials">Bezier Polynomials</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.bezier_polynomial.h0"></a>
<span class="phrase"><a name="math_toolkit.bezier_polynomial.synopsis"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.synopsis">Synopsis</a>
</h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">interpolators</span><span class="special">/</span><span class="identifier">bezier_polynomials</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">interpolators</span> <span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="identifier">RandomAccessContainer</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">bezier_polynomial</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">using</span> <span class="identifier">Point</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">RandomAccessContainer</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">Real</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">Point</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">Z</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">RandomAccessContainer</span><span class="special">::</span><span class="identifier">size_type</span><span class="special">;</span>
<span class="identifier">bezier_polynomial</span><span class="special">(</span><span class="identifier">RandomAccessContainer</span><span class="special">&&</span> <span class="identifier">control_points</span><span class="special">);</span>
<span class="keyword">inline</span> <span class="identifier">Point</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Real</span> <span class="identifier">t</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">inline</span> <span class="identifier">Point</span> <span class="identifier">prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">t</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">void</span> <span class="identifier">edit_control_point</span><span class="special">(</span><span class="identifier">Point</span> <span class="identifier">cont</span> <span class="special">&</span> <span class="identifier">p</span><span class="special">,</span> <span class="identifier">Z</span> <span class="identifier">index</span><span class="special">);</span>
<span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">control_points</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span><span class="special">&</span> <span class="keyword">operator</span><span class="special"><<(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span><span class="special">&</span> <span class="identifier">out</span><span class="special">,</span> <span class="identifier">bezier_polynomial</span><span class="special"><</span><span class="identifier">RandomAccessContainer</span><span class="special">></span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">bp</span><span class="special">);</span>
<span class="special">};</span>
<span class="special">}</span>
</pre>
<h4>
<a name="math_toolkit.bezier_polynomial.h1"></a>
<span class="phrase"><a name="math_toolkit.bezier_polynomial.description"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.description">Description</a>
</h4>
<p>
Bézier polynomials are curves smooth curves which approximate a set of control
points. They are commonly used in computer-aided geometric design. A basic
usage is demonstrated below:
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">>></span> <span class="identifier">control_points</span><span class="special">(</span><span class="number">4</span><span class="special">);</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">};</span>
<span class="keyword">auto</span> <span class="identifier">bp</span> <span class="special">=</span> <span class="identifier">bezier_polynomial</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">control_points</span><span class="special">));</span>
<span class="comment">// Interpolate at t = 0.1:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">></span> <span class="identifier">point</span> <span class="special">=</span> <span class="identifier">bp</span><span class="special">(</span><span class="number">0.1</span><span class="special">);</span>
</pre>
<p>
The support of the interpolant is [0,1], and an error message will be written
if attempting to evaluate the polynomial outside of these bounds. At least
two points must be passed; creating a polynomial of degree 1.
</p>
<p>
Control points may be modified via <code class="computeroutput"><span class="identifier">edit_control_point</span></code>,
for example:
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">></span> <span class="identifier">endpoint</span><span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">1</span><span class="special">};</span>
<span class="identifier">bp</span><span class="special">.</span><span class="identifier">edit_control_point</span><span class="special">(</span><span class="identifier">endpoint</span><span class="special">,</span> <span class="number">3</span><span class="special">);</span>
</pre>
<p>
This replaces the last control point with <code class="computeroutput"><span class="identifier">endpoint</span></code>.
</p>
<p>
Tangents are computed with the <code class="computeroutput"><span class="special">.</span><span class="identifier">prime</span></code> member function, and the control points
may be referenced with the <code class="computeroutput"><span class="special">.</span><span class="identifier">control_points</span></code>
member function.
</p>
<p>
The overloaded operator <span class="emphasis"><em><<</em></span> is disappointing: The
control points are simply printed. Rendering the Bezier and its convex hull
seems to be the best "print" statement for it, but this is essentially
impossible in modern terminals.
</p>
<h4>
<a name="math_toolkit.bezier_polynomial.h2"></a>
<span class="phrase"><a name="math_toolkit.bezier_polynomial.caveats"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.caveats">Caveats</a>
</h4>
<p>
Do not confuse the Bezier polynomial with a Bezier spline. A Bezier spline
has a fixed polynomial order and subdivides the curve into low-order polynomial
segments. <span class="emphasis"><em>This is not a spline!</em></span> Passing <span class="emphasis"><em>n</em></span>
control points to the <code class="computeroutput"><span class="identifier">bezier_polynomial</span></code>
class creates a polynomial of degree n-1, whereas a Bezier spline has a fixed
order independent of the number of control points.
</p>
<p>
Requires C++17 and support for threadlocal storage.
</p>
<h4>
<a name="math_toolkit.bezier_polynomial.h3"></a>
<span class="phrase"><a name="math_toolkit.bezier_polynomial.performance"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.performance">Performance</a>
</h4>
<p>
The following performance numbers were generated for evaluating the Bezier-polynomial.
The evaluation of the interpolant is 𝑶(<span class="emphasis"><em>N</em></span>^2), as expected
from de Casteljau's algorithm.
</p>
<pre class="programlisting"><span class="identifier">Run</span> <span class="identifier">on</span> <span class="special">(</span><span class="number">16</span> <span class="identifier">X</span> <span class="number">2300</span> <span class="identifier">MHz</span> <span class="identifier">CPU</span> <span class="identifier">s</span><span class="special">)</span>
<span class="identifier">CPU</span> <span class="identifier">Caches</span><span class="special">:</span>
<span class="identifier">L1</span> <span class="identifier">Data</span> <span class="number">32</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L1</span> <span class="identifier">Instruction</span> <span class="number">32</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L2</span> <span class="identifier">Unified</span> <span class="number">256</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L3</span> <span class="identifier">Unified</span> <span class="number">16384</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x1</span><span class="special">)</span>
<span class="special">---------------------------------------------------------</span>
<span class="identifier">Benchmark</span> <span class="identifier">Time</span> <span class="identifier">CPU</span>
<span class="special">---------------------------------------------------------</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">2</span> <span class="number">9.07</span> <span class="identifier">ns</span> <span class="number">9.06</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">3</span> <span class="number">13.2</span> <span class="identifier">ns</span> <span class="number">13.1</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">4</span> <span class="number">17.5</span> <span class="identifier">ns</span> <span class="number">17.5</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">5</span> <span class="number">21.7</span> <span class="identifier">ns</span> <span class="number">21.7</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">6</span> <span class="number">27.4</span> <span class="identifier">ns</span> <span class="number">27.4</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">7</span> <span class="number">32.4</span> <span class="identifier">ns</span> <span class="number">32.3</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">8</span> <span class="number">40.4</span> <span class="identifier">ns</span> <span class="number">40.4</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">9</span> <span class="number">51.9</span> <span class="identifier">ns</span> <span class="number">51.8</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">10</span> <span class="number">65.9</span> <span class="identifier">ns</span> <span class="number">65.9</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">11</span> <span class="number">79.1</span> <span class="identifier">ns</span> <span class="number">79.1</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">12</span> <span class="number">83.0</span> <span class="identifier">ns</span> <span class="number">82.9</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">13</span> <span class="number">108</span> <span class="identifier">ns</span> <span class="number">108</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">14</span> <span class="number">119</span> <span class="identifier">ns</span> <span class="number">119</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">15</span> <span class="number">140</span> <span class="identifier">ns</span> <span class="number">140</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">16</span> <span class="number">137</span> <span class="identifier">ns</span> <span class="number">137</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">17</span> <span class="number">151</span> <span class="identifier">ns</span> <span class="number">151</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">18</span> <span class="number">171</span> <span class="identifier">ns</span> <span class="number">171</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">19</span> <span class="number">194</span> <span class="identifier">ns</span> <span class="number">193</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">20</span> <span class="number">213</span> <span class="identifier">ns</span> <span class="number">213</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">21</span> <span class="number">220</span> <span class="identifier">ns</span> <span class="number">220</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">22</span> <span class="number">260</span> <span class="identifier">ns</span> <span class="number">260</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">23</span> <span class="number">266</span> <span class="identifier">ns</span> <span class="number">266</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">24</span> <span class="number">293</span> <span class="identifier">ns</span> <span class="number">292</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">25</span> <span class="number">319</span> <span class="identifier">ns</span> <span class="number">319</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">26</span> <span class="number">336</span> <span class="identifier">ns</span> <span class="number">335</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">27</span> <span class="number">370</span> <span class="identifier">ns</span> <span class="number">370</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">28</span> <span class="number">429</span> <span class="identifier">ns</span> <span class="number">429</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">29</span> <span class="number">443</span> <span class="identifier">ns</span> <span class="number">443</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">>/</span><span class="number">30</span> <span class="number">421</span> <span class="identifier">ns</span> <span class="number">421</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span><span class="identifier">_BigO</span> <span class="number">0.52</span> <span class="identifier">N</span><span class="special">^</span><span class="number">2</span> <span class="number">0.51</span> <span class="identifier">N</span><span class="special">^</span><span class="number">2</span>
</pre>
<p>
The Casteljau recurrence is indeed quadratic in the number of control points,
and is chosen for numerical stability. See <span class="emphasis"><em>Bezier and B-spline Techniques</em></span>,
section 2.3 for a method to Hornerize the Berstein polynomials and perhaps
produce speedups.
</p>
<h4>
<a name="math_toolkit.bezier_polynomial.h4"></a>
<span class="phrase"><a name="math_toolkit.bezier_polynomial.point_types"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.point_types">Point
types</a>
</h4>
<p>
The <code class="computeroutput"><span class="identifier">Point</span></code> type must satisfy
certain conceptual requirements which are discussed in the documentation of
the Catmull-Rom curve. However, we reiterate them here:
</p>
<pre class="programlisting"><span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">mypoint3d</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="comment">// Must define a value_type:</span>
<span class="keyword">typedef</span> <span class="identifier">Real</span> <span class="identifier">value_type</span><span class="special">;</span>
<span class="comment">// Regular constructor--need not be of this form.</span>
<span class="identifier">mypoint3d</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">{</span><span class="identifier">m_vec</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">;</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">y</span><span class="special">;</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">z</span><span class="special">;</span> <span class="special">}</span>
<span class="comment">// Must define a default constructor:</span>
<span class="identifier">mypoint3d</span><span class="special">()</span> <span class="special">{}</span>
<span class="comment">// Must define array access:</span>
<span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="comment">// Must define array element assignment:</span>
<span class="identifier">Real</span><span class="special">&</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
<span class="special">}</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="number">3</span><span class="special">></span> <span class="identifier">m_vec</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
These conditions are satisfied by both <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span></code> and
<code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code>.
</p>
<h4>
<a name="math_toolkit.bezier_polynomial.h5"></a>
<span class="phrase"><a name="math_toolkit.bezier_polynomial.references"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.references">References</a>
</h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Rainer Kress, <span class="emphasis"><em>Numerical Analysis</em></span>, Springer, 1998
</li>
<li class="listitem">
David Salomon, <span class="emphasis"><em>Curves and Surfaces for Computer Graphics</em></span>,
Springer, 2005
</li>
<li class="listitem">
Prautzsch, Hartmut, Wolfgang Boehm, and Marco Paluszny. <span class="emphasis"><em>Bézier
and B-spline techniques</em></span>. Springer Science & Business Media,
2002.
</li>
</ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="catmull_rom.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_trigonometric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|