File: bezier_polynomial.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (251 lines) | stat: -rw-r--r-- 32,084 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Bezier Polynomials</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../interpolation.html" title="Chapter 13. Interpolation">
<link rel="prev" href="catmull_rom.html" title="Catmull-Rom Splines">
<link rel="next" href="cardinal_trigonometric.html" title="Cardinal Trigonometric interpolation">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="catmull_rom.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_trigonometric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.bezier_polynomial"></a><a class="link" href="bezier_polynomial.html" title="Bezier Polynomials">Bezier Polynomials</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.bezier_polynomial.h0"></a>
      <span class="phrase"><a name="math_toolkit.bezier_polynomial.synopsis"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.synopsis">Synopsis</a>
    </h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">interpolators</span><span class="special">/</span><span class="identifier">bezier_polynomials</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>

<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">interpolators</span> <span class="special">{</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="identifier">RandomAccessContainer</span><span class="special">&gt;</span>
    <span class="keyword">class</span> <span class="identifier">bezier_polynomial</span>
    <span class="special">{</span>
    <span class="keyword">public</span><span class="special">:</span>
        <span class="keyword">using</span> <span class="identifier">Point</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">RandomAccessContainer</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">;</span>
        <span class="keyword">using</span> <span class="identifier">Real</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">Point</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">;</span>
        <span class="keyword">using</span> <span class="identifier">Z</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">RandomAccessContainer</span><span class="special">::</span><span class="identifier">size_type</span><span class="special">;</span>

        <span class="identifier">bezier_polynomial</span><span class="special">(</span><span class="identifier">RandomAccessContainer</span><span class="special">&amp;&amp;</span> <span class="identifier">control_points</span><span class="special">);</span>

        <span class="keyword">inline</span> <span class="identifier">Point</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Real</span> <span class="identifier">t</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>

        <span class="keyword">inline</span> <span class="identifier">Point</span> <span class="identifier">prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">t</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>

        <span class="keyword">void</span> <span class="identifier">edit_control_point</span><span class="special">(</span><span class="identifier">Point</span> <span class="identifier">cont</span> <span class="special">&amp;</span> <span class="identifier">p</span><span class="special">,</span> <span class="identifier">Z</span> <span class="identifier">index</span><span class="special">);</span>

        <span class="identifier">RandomAccessContainer</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">control_points</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>

        <span class="keyword">friend</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">&lt;&lt;(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">ostream</span><span class="special">&amp;</span> <span class="identifier">out</span><span class="special">,</span> <span class="identifier">bezier_polynomial</span><span class="special">&lt;</span><span class="identifier">RandomAccessContainer</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">bp</span><span class="special">);</span>
    <span class="special">};</span>

<span class="special">}</span>
</pre>
<h4>
<a name="math_toolkit.bezier_polynomial.h1"></a>
      <span class="phrase"><a name="math_toolkit.bezier_polynomial.description"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.description">Description</a>
    </h4>
<p>
      Bézier polynomials are curves smooth curves which approximate a set of control
      points. They are commonly used in computer-aided geometric design. A basic
      usage is demonstrated below:
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;&gt;</span> <span class="identifier">control_points</span><span class="special">(</span><span class="number">4</span><span class="special">);</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
<span class="identifier">control_points</span><span class="special">[</span><span class="number">3</span><span class="special">]</span> <span class="special">=</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">};</span>
<span class="keyword">auto</span> <span class="identifier">bp</span> <span class="special">=</span> <span class="identifier">bezier_polynomial</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">move</span><span class="special">(</span><span class="identifier">control_points</span><span class="special">));</span>
<span class="comment">// Interpolate at t = 0.1:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;</span> <span class="identifier">point</span> <span class="special">=</span> <span class="identifier">bp</span><span class="special">(</span><span class="number">0.1</span><span class="special">);</span>
</pre>
<p>
      The support of the interpolant is [0,1], and an error message will be written
      if attempting to evaluate the polynomial outside of these bounds. At least
      two points must be passed; creating a polynomial of degree 1.
    </p>
<p>
      Control points may be modified via <code class="computeroutput"><span class="identifier">edit_control_point</span></code>,
      for example:
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;</span> <span class="identifier">endpoint</span><span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">,</span><span class="number">1</span><span class="special">};</span>
<span class="identifier">bp</span><span class="special">.</span><span class="identifier">edit_control_point</span><span class="special">(</span><span class="identifier">endpoint</span><span class="special">,</span> <span class="number">3</span><span class="special">);</span>
</pre>
<p>
      This replaces the last control point with <code class="computeroutput"><span class="identifier">endpoint</span></code>.
    </p>
<p>
      Tangents are computed with the <code class="computeroutput"><span class="special">.</span><span class="identifier">prime</span></code> member function, and the control points
      may be referenced with the <code class="computeroutput"><span class="special">.</span><span class="identifier">control_points</span></code>
      member function.
    </p>
<p>
      The overloaded operator <span class="emphasis"><em>&lt;&lt;</em></span> is disappointing: The
      control points are simply printed. Rendering the Bezier and its convex hull
      seems to be the best "print" statement for it, but this is essentially
      impossible in modern terminals.
    </p>
<h4>
<a name="math_toolkit.bezier_polynomial.h2"></a>
      <span class="phrase"><a name="math_toolkit.bezier_polynomial.caveats"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.caveats">Caveats</a>
    </h4>
<p>
      Do not confuse the Bezier polynomial with a Bezier spline. A Bezier spline
      has a fixed polynomial order and subdivides the curve into low-order polynomial
      segments. <span class="emphasis"><em>This is not a spline!</em></span> Passing <span class="emphasis"><em>n</em></span>
      control points to the <code class="computeroutput"><span class="identifier">bezier_polynomial</span></code>
      class creates a polynomial of degree n-1, whereas a Bezier spline has a fixed
      order independent of the number of control points.
    </p>
<p>
      Requires C++17 and support for threadlocal storage.
    </p>
<h4>
<a name="math_toolkit.bezier_polynomial.h3"></a>
      <span class="phrase"><a name="math_toolkit.bezier_polynomial.performance"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.performance">Performance</a>
    </h4>
<p>
      The following performance numbers were generated for evaluating the Bezier-polynomial.
      The evaluation of the interpolant is 𝑶(<span class="emphasis"><em>N</em></span>^2), as expected
      from de Casteljau's algorithm.
    </p>
<pre class="programlisting"><span class="identifier">Run</span> <span class="identifier">on</span> <span class="special">(</span><span class="number">16</span> <span class="identifier">X</span> <span class="number">2300</span> <span class="identifier">MHz</span> <span class="identifier">CPU</span> <span class="identifier">s</span><span class="special">)</span>
<span class="identifier">CPU</span> <span class="identifier">Caches</span><span class="special">:</span>
<span class="identifier">L1</span> <span class="identifier">Data</span> <span class="number">32</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L1</span> <span class="identifier">Instruction</span> <span class="number">32</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L2</span> <span class="identifier">Unified</span> <span class="number">256</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x8</span><span class="special">)</span>
<span class="identifier">L3</span> <span class="identifier">Unified</span> <span class="number">16384</span> <span class="identifier">KiB</span> <span class="special">(</span><span class="identifier">x1</span><span class="special">)</span>
<span class="special">---------------------------------------------------------</span>
<span class="identifier">Benchmark</span>                              <span class="identifier">Time</span>           <span class="identifier">CPU</span>
<span class="special">---------------------------------------------------------</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">2</span>        <span class="number">9.07</span> <span class="identifier">ns</span>         <span class="number">9.06</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">3</span>        <span class="number">13.2</span> <span class="identifier">ns</span>         <span class="number">13.1</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">4</span>        <span class="number">17.5</span> <span class="identifier">ns</span>         <span class="number">17.5</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">5</span>        <span class="number">21.7</span> <span class="identifier">ns</span>         <span class="number">21.7</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">6</span>        <span class="number">27.4</span> <span class="identifier">ns</span>         <span class="number">27.4</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">7</span>        <span class="number">32.4</span> <span class="identifier">ns</span>         <span class="number">32.3</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">8</span>        <span class="number">40.4</span> <span class="identifier">ns</span>         <span class="number">40.4</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">9</span>        <span class="number">51.9</span> <span class="identifier">ns</span>         <span class="number">51.8</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">10</span>       <span class="number">65.9</span> <span class="identifier">ns</span>         <span class="number">65.9</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">11</span>       <span class="number">79.1</span> <span class="identifier">ns</span>         <span class="number">79.1</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">12</span>       <span class="number">83.0</span> <span class="identifier">ns</span>         <span class="number">82.9</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">13</span>        <span class="number">108</span> <span class="identifier">ns</span>          <span class="number">108</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">14</span>        <span class="number">119</span> <span class="identifier">ns</span>          <span class="number">119</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">15</span>        <span class="number">140</span> <span class="identifier">ns</span>          <span class="number">140</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">16</span>        <span class="number">137</span> <span class="identifier">ns</span>          <span class="number">137</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">17</span>        <span class="number">151</span> <span class="identifier">ns</span>          <span class="number">151</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">18</span>        <span class="number">171</span> <span class="identifier">ns</span>          <span class="number">171</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">19</span>        <span class="number">194</span> <span class="identifier">ns</span>          <span class="number">193</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">20</span>        <span class="number">213</span> <span class="identifier">ns</span>          <span class="number">213</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">21</span>        <span class="number">220</span> <span class="identifier">ns</span>          <span class="number">220</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">22</span>        <span class="number">260</span> <span class="identifier">ns</span>          <span class="number">260</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">23</span>        <span class="number">266</span> <span class="identifier">ns</span>          <span class="number">266</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">24</span>        <span class="number">293</span> <span class="identifier">ns</span>          <span class="number">292</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">25</span>        <span class="number">319</span> <span class="identifier">ns</span>          <span class="number">319</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">26</span>        <span class="number">336</span> <span class="identifier">ns</span>          <span class="number">335</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">27</span>        <span class="number">370</span> <span class="identifier">ns</span>          <span class="number">370</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">28</span>        <span class="number">429</span> <span class="identifier">ns</span>          <span class="number">429</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">29</span>        <span class="number">443</span> <span class="identifier">ns</span>          <span class="number">443</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;/</span><span class="number">30</span>        <span class="number">421</span> <span class="identifier">ns</span>          <span class="number">421</span> <span class="identifier">ns</span>
<span class="identifier">BezierPolynomial</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span><span class="identifier">_BigO</span>       <span class="number">0.52</span> <span class="identifier">N</span><span class="special">^</span><span class="number">2</span>        <span class="number">0.51</span> <span class="identifier">N</span><span class="special">^</span><span class="number">2</span>
</pre>
<p>
      The Casteljau recurrence is indeed quadratic in the number of control points,
      and is chosen for numerical stability. See <span class="emphasis"><em>Bezier and B-spline Techniques</em></span>,
      section 2.3 for a method to Hornerize the Berstein polynomials and perhaps
      produce speedups.
    </p>
<h4>
<a name="math_toolkit.bezier_polynomial.h4"></a>
      <span class="phrase"><a name="math_toolkit.bezier_polynomial.point_types"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.point_types">Point
      types</a>
    </h4>
<p>
      The <code class="computeroutput"><span class="identifier">Point</span></code> type must satisfy
      certain conceptual requirements which are discussed in the documentation of
      the Catmull-Rom curve. However, we reiterate them here:
    </p>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">&gt;</span>
<span class="keyword">class</span> <span class="identifier">mypoint3d</span>
<span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
    <span class="comment">// Must define a value_type:</span>
    <span class="keyword">typedef</span> <span class="identifier">Real</span> <span class="identifier">value_type</span><span class="special">;</span>

    <span class="comment">// Regular constructor--need not be of this form.</span>
    <span class="identifier">mypoint3d</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">y</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">{</span><span class="identifier">m_vec</span><span class="special">[</span><span class="number">0</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">x</span><span class="special">;</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="number">1</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">y</span><span class="special">;</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="number">2</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">z</span><span class="special">;</span> <span class="special">}</span>

    <span class="comment">// Must define a default constructor:</span>
    <span class="identifier">mypoint3d</span><span class="special">()</span> <span class="special">{}</span>

    <span class="comment">// Must define array access:</span>
    <span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span> <span class="keyword">const</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
    <span class="special">}</span>

    <span class="comment">// Must define array element assignment:</span>
    <span class="identifier">Real</span><span class="special">&amp;</span> <span class="keyword">operator</span><span class="special">[](</span><span class="identifier">size_t</span> <span class="identifier">i</span><span class="special">)</span>
    <span class="special">{</span>
        <span class="keyword">return</span> <span class="identifier">m_vec</span><span class="special">[</span><span class="identifier">i</span><span class="special">];</span>
    <span class="special">}</span>

<span class="keyword">private</span><span class="special">:</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">,</span> <span class="number">3</span><span class="special">&gt;</span> <span class="identifier">m_vec</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
      These conditions are satisfied by both <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span></code> and
      <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span></code>.
    </p>
<h4>
<a name="math_toolkit.bezier_polynomial.h5"></a>
      <span class="phrase"><a name="math_toolkit.bezier_polynomial.references"></a></span><a class="link" href="bezier_polynomial.html#math_toolkit.bezier_polynomial.references">References</a>
    </h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          Rainer Kress, <span class="emphasis"><em>Numerical Analysis</em></span>, Springer, 1998
        </li>
<li class="listitem">
          David Salomon, <span class="emphasis"><em>Curves and Surfaces for Computer Graphics</em></span>,
          Springer, 2005
        </li>
<li class="listitem">
          Prautzsch, Hartmut, Wolfgang Boehm, and Marco Paluszny. <span class="emphasis"><em>Bézier
          and B-spline techniques</em></span>. Springer Science &amp; Business Media,
          2002.
        </li>
</ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="catmull_rom.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../interpolation.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cardinal_trigonometric.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>