File: bivariate_statistics.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (155 lines) | stat: -rw-r--r-- 18,162 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Bivariate Statistics</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../statistics.html" title="Chapter 6. Statistics">
<link rel="prev" href="univariate_statistics.html" title="Univariate Statistics">
<link rel="next" href="signal_statistics.html" title="Signal Statistics">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="univariate_statistics.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../statistics.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="signal_statistics.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.bivariate_statistics"></a><a class="link" href="bivariate_statistics.html" title="Bivariate Statistics">Bivariate Statistics</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.bivariate_statistics.h0"></a>
      <span class="phrase"><a name="math_toolkit.bivariate_statistics.synopsis"></a></span><a class="link" href="bivariate_statistics.html#math_toolkit.bivariate_statistics.synopsis">Synopsis</a>
    </h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">statistics</span><span class="special">/</span><span class="identifier">bivariate_statistics</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>

<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">statistics</span> <span class="special">{</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ExecutionPolicy</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">&gt;</span>
    <span class="keyword">auto</span> <span class="identifier">covariance</span><span class="special">(</span><span class="identifier">ExecutionPolicy</span><span class="special">&amp;&amp;</span> <span class="identifier">exec</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">);</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">&gt;</span>
    <span class="keyword">auto</span> <span class="identifier">covariance</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">);</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ExecutionPolicy</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">&gt;</span>
    <span class="keyword">auto</span> <span class="identifier">means_and_covariance</span><span class="special">(</span><span class="identifier">ExecutionPolicy</span><span class="special">&amp;&amp;</span> <span class="identifier">exec</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">);</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">&gt;</span>
    <span class="keyword">auto</span> <span class="identifier">means_and_covariance</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">);</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ExecutionPolicy</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">&gt;</span>
    <span class="keyword">auto</span> <span class="identifier">correlation_coefficient</span><span class="special">(</span><span class="identifier">ExecutionPolicy</span><span class="special">&amp;&amp;</span> <span class="identifier">exec</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">);</span>

    <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">&gt;</span>
    <span class="keyword">auto</span> <span class="identifier">correlation_coefficient</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">u</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">v</span><span class="special">);</span>

<span class="special">}}}</span>
</pre>
<h4>
<a name="math_toolkit.bivariate_statistics.h1"></a>
      <span class="phrase"><a name="math_toolkit.bivariate_statistics.description"></a></span><a class="link" href="bivariate_statistics.html#math_toolkit.bivariate_statistics.description">Description</a>
    </h4>
<p>
      This file provides functions for computing bivariate statistics. The functions
      are C++11 compatible, but require C++17 to use execution policies. If an execution
      policy is not passed to the function the default is std::execution::seq.
    </p>
<h4>
<a name="math_toolkit.bivariate_statistics.h2"></a>
      <span class="phrase"><a name="math_toolkit.bivariate_statistics.covariance"></a></span><a class="link" href="bivariate_statistics.html#math_toolkit.bivariate_statistics.covariance">Covariance</a>
    </h4>
<p>
      Computes the population covariance of two datasets:
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">u</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">,</span><span class="number">5</span><span class="special">};</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">,</span><span class="number">5</span><span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">cov_uv</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">covariance</span><span class="special">(</span><span class="identifier">u</span><span class="special">,</span> <span class="identifier">v</span><span class="special">);</span>
</pre>
<p>
      The implementation follows <a href="https://doi.org/10.1109/CLUSTR.2009.5289161" target="_top">Bennet
      et al</a>. The parallel implementation follows <a href="https://dl.acm.org/doi/10.1145/3221269.3223036" target="_top">Schubert
      et al</a>. The data is not modified. Works with real-valued inputs and
      does not work with complex-valued inputs.
    </p>
<p>
      <span class="emphasis"><em>Nota bene:</em></span> If the input is an integer type the output
      will be a double precision type.
    </p>
<p>
      The algorithm used herein simultaneously generates the mean values of the input
      data <span class="emphasis"><em>u</em></span> and <span class="emphasis"><em>v</em></span>. For certain applications,
      it might be useful to get them in a single pass through the data. As such,
      we provide <code class="computeroutput"><span class="identifier">means_and_covariance</span></code>:
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">u</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">,</span><span class="number">5</span><span class="special">};</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">,</span><span class="number">5</span><span class="special">};</span>
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">mu_u</span><span class="special">,</span> <span class="identifier">mu_v</span><span class="special">,</span> <span class="identifier">cov_uv</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">means_and_covariance</span><span class="special">(</span><span class="identifier">u</span><span class="special">,</span> <span class="identifier">v</span><span class="special">);</span>
</pre>
<h4>
<a name="math_toolkit.bivariate_statistics.h3"></a>
      <span class="phrase"><a name="math_toolkit.bivariate_statistics.correlation_coefficient"></a></span><a class="link" href="bivariate_statistics.html#math_toolkit.bivariate_statistics.correlation_coefficient">Correlation
      Coefficient</a>
    </h4>
<p>
      Computes the <a href="https://en.wikipedia.org/wiki/Pearson_correlation_coefficient" target="_top">Pearson
      correlation coefficient</a> of two datasets <span class="emphasis"><em>u</em></span> and
      <span class="emphasis"><em>v</em></span>:
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">u</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">,</span><span class="number">5</span><span class="special">};</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">2</span><span class="special">,</span><span class="number">3</span><span class="special">,</span><span class="number">4</span><span class="special">,</span><span class="number">5</span><span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">rho_uv</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">correlation_coefficient</span><span class="special">(</span><span class="identifier">u</span><span class="special">,</span> <span class="identifier">v</span><span class="special">);</span>
<span class="comment">// rho_uv = 1.</span>
</pre>
<p>
      Works with real-valued inputs and does not work with complex-valued inputs.
    </p>
<p>
      <span class="emphasis"><em>Nota bene:</em></span> If the input is an integer type the output
      will be a double precision type.
    </p>
<p>
      If one or both of the datasets is constant, the correlation coefficient is
      an indeterminant form (0/0). In this case the returned value is a <code class="computeroutput"><span class="identifier">quiet_NaN</span><span class="special">()</span></code>.
    </p>
<h4>
<a name="math_toolkit.bivariate_statistics.h4"></a>
      <span class="phrase"><a name="math_toolkit.bivariate_statistics.references"></a></span><a class="link" href="bivariate_statistics.html#math_toolkit.bivariate_statistics.references">References</a>
    </h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          Bennett, Janine, et al. <span class="emphasis"><em>Numerically stable, single-pass, parallel
          statistics algorithms.</em></span> Cluster Computing and Workshops, 2009.
          CLUSTER'09. IEEE International Conference on. IEEE, 2009.
        </li>
<li class="listitem">
          Schubert, Erich; Gertz, Michael <span class="emphasis"><em>Numerically stable parallel computation
          of (co-)variance'</em></span> Proceedings of the 30th International Conference
          on Scientific and Statistical Database Management, 2018.
        </li>
</ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="univariate_statistics.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../statistics.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="signal_statistics.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>