1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Daubechies Wavelets and Scaling Functions</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../special.html" title="Chapter 8. Special Functions">
<link rel="prev" href="owens_t.html" title="Owen's T function">
<link rel="next" href="ccmath.html" title="Constexpr CMath">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="owens_t.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="ccmath.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.daubechies"></a><a class="link" href="daubechies.html" title="Daubechies Wavelets and Scaling Functions">Daubechies Wavelets and Scaling
Functions</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.daubechies.h0"></a>
<span class="phrase"><a name="math_toolkit.daubechies.synopsis"></a></span><a class="link" href="daubechies.html#math_toolkit.daubechies.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">daubechies_scaling</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span> <span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">p</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">daubechies_scaling</span> <span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">daubechies_scaling</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">grid_refinements</span> <span class="special">=</span> <span class="special">-</span><span class="number">1</span><span class="special">);</span>
<span class="keyword">inline</span> <span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">inline</span> <span class="identifier">Real</span> <span class="identifier">prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">inline</span> <span class="identifier">Real</span> <span class="identifier">double_prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">></span> <span class="identifier">support</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">int64_t</span> <span class="identifier">bytes</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">p</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">order</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">Real</span><span class="special">></span> <span class="identifier">dyadic_grid</span><span class="special">(</span><span class="identifier">int64_t</span> <span class="identifier">j_max</span><span class="special">);</span>
<span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">daubechies_wavelet</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">p</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">daubechies_wavelet</span> <span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">daubechies_wavelet</span><span class="special">(</span><span class="keyword">int</span> <span class="identifier">grid_refinements</span> <span class="special">=</span> <span class="special">-</span><span class="number">1</span><span class="special">);</span>
<span class="keyword">inline</span> <span class="identifier">Real</span> <span class="keyword">operator</span><span class="special">()(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">inline</span> <span class="identifier">Real</span> <span class="identifier">prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="keyword">inline</span> <span class="identifier">Real</span> <span class="identifier">double_prime</span><span class="special">(</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">></span> <span class="identifier">support</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="identifier">int64_t</span> <span class="identifier">bytes</span><span class="special">()</span> <span class="keyword">const</span><span class="special">;</span>
<span class="special">};</span>
<span class="special">}</span> <span class="comment">// namespaces</span>
</pre>
<p>
Daubechies wavelets and scaling functions are a family of compactly supported
functions indexed by an integer <span class="emphasis"><em>p</em></span> which have <span class="emphasis"><em>p</em></span>
vanishing moments and an associated filter of length <span class="emphasis"><em>2p</em></span>.
They are used in signal denoising, Galerkin methods for PDEs, and compression.
</p>
<p>
The canonical reference on these functions is Daubechies' monograph <span class="emphasis"><em>Ten
Lectures on Wavelets</em></span>, whose notational conventions we attempt to
follow here.
</p>
<p>
A basic usage is as follows:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">phi</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">daubechies_scaling</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">8</span><span class="special">>();</span>
<span class="keyword">double</span> <span class="identifier">y</span> <span class="special">=</span> <span class="identifier">phi</span><span class="special">(</span><span class="number">0.38</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">dydx</span> <span class="special">=</span> <span class="identifier">phi</span><span class="special">.</span><span class="identifier">prime</span><span class="special">(</span><span class="number">0.38</span><span class="special">);</span>
<span class="keyword">auto</span> <span class="identifier">psi</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">daubechies_wavelet</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">8</span><span class="special">>();</span>
<span class="identifier">y</span> <span class="special">=</span> <span class="identifier">psi</span><span class="special">(</span><span class="number">0.38</span><span class="special">);</span>
</pre>
<p>
Note that the constructor call is expensive, as it must assemble a <span class="emphasis"><em>dyadic
grid</em></span>--values of <sub><span class="emphasis"><em>p</em></span></sub>φ at dyadic rationals,
i.e., numbers of the form n/2<sup><span class="emphasis"><em>j</em></span></sup>. You should only instantiate
this class once in the duration of a program. The class is pimpl'd and all
its member functions are threadsafe, so it can be copied cheaply and shared
between threads. The default number of grid refinements is chosen so that the
relative error is controlled to ~2-3 ULPs away from the right-hand side of
the support, where superexponential growth of the condition number of function
evaluation makes this impossible. However, controlling relative error of Daubechies
wavelets and scaling functions is much more difficult than controlling absolute
error, and the memory consumption is much higher in relative mode. The memory
consumption of the class can be queried via
</p>
<pre class="programlisting"><span class="identifier">int64_t</span> <span class="identifier">mem</span> <span class="special">=</span> <span class="identifier">phi</span><span class="special">.</span><span class="identifier">bytes</span><span class="special">();</span>
</pre>
<p>
and if this is deemed unacceptably large, the user may choose to control absolute
error via calling the constructor with the <code class="computeroutput"><span class="identifier">grid_refinements</span></code>
parameter set to -2, so
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">phi</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">daubechies_scaling</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">8</span><span class="special">>(-</span><span class="number">2</span><span class="special">);</span>
</pre>
<p>
gives a scaling function which keeps the absolute error bounded by roughly
the double precision unit roundoff.
</p>
<p>
If context precludes the ability to reuse the class throughout the program,
it makes sense to reduce the accuracy even further. This can be done by specifying
the grid refinements, for example,
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">phi</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">daubechies_scaling</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="number">8</span><span class="special">>(</span><span class="number">12</span><span class="special">);</span>
</pre>
<p>
creates a Daubechies scaling function interpolated from a dyadic grid computed
down to depth <span class="emphasis"><em>j</em></span> = 12. The call to the constructor is exponential
time in the number of grid refinements, and the call operator, <code class="computeroutput"><span class="special">.</span><span class="identifier">prime</span></code>, and
<code class="computeroutput"><span class="special">.</span><span class="identifier">double_prime</span></code>
are constant time.
</p>
<p>
Note that the only reason that this is a class, rather than a free function
is that the dyadic grids would make the Boost source download extremely large.
Hence, it may make sense to precompute the dyadic grid and dump it in a <code class="computeroutput"><span class="special">.</span><span class="identifier">cpp</span></code> file;
this can be achieved via
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">float128</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">grid_refinements</span> <span class="special">=</span> <span class="number">12</span><span class="special">;</span>
<span class="keyword">constexpr</span> <span class="keyword">const</span> <span class="identifier">derivative</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
<span class="keyword">constexpr</span> <span class="keyword">const</span> <span class="identifier">p</span> <span class="special">=</span> <span class="number">8</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special"><</span><span class="identifier">float128</span><span class="special">></span> <span class="identifier">v</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">dyadic_grid</span><span class="special"><</span><span class="identifier">float128</span><span class="special">,</span> <span class="identifier">p</span><span class="special">,</span> <span class="identifier">derivative</span><span class="special">>(</span><span class="identifier">grid_refinements</span><span class="special">);</span>
</pre>
<p>
Note that quad precision is the most accurate precision provided, for both
the dyadic grid and for the scaling function. 1ULP accuracy can only be achieved
for float and double precision, in well-conditioned regions.
</p>
<p>
Derivatives are only available if the wavelet and scaling function has sufficient
smoothness. The compiler will gladly inform you of your error if you try to
call <code class="computeroutput"><span class="special">.</span><span class="identifier">prime</span></code>
on <sub>2</sub>φ, which is not differentiable, but be aware that smoothness increases
with the number of vanishing moments.
</p>
<p>
The axioms of a multiresolution analysis ensure that integer shifts of the
scaling functions are elements of the multiresolution analysis; a side effect
is that the supports of the (unshifted) wavelet and scaling functions are arbitrary.
For this reason, we have provided <code class="computeroutput"><span class="special">.</span><span class="identifier">support</span><span class="special">()</span></code>
so that you can check our conventions:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="special">[</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">phi</span><span class="special">.</span><span class="identifier">support</span><span class="special">();</span>
</pre>
<p>
For definiteness though, for the scaling function, the support is always [0,
<span class="emphasis"><em>2p</em></span> - 1], and the support of the wavelet is [ -<span class="emphasis"><em>p</em></span>
+ 1, <span class="emphasis"><em>p</em></span>].
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../graphs/daubechies_2_scaling.svg"></object></span> The 2 vanishing
moment scaling function.
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../graphs/daubechies_8_scaling.svg"></object></span> The 8 vanishing
moment scaling function.
</p>
<p>
Boost.Math also provides numerical evaluation of the Fourier transform of these
functions. This is useful in sparse recovery problems where the measurements
are taken in the Fourier basis. The usage is exhibited below:
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">fourier_transform_daubechies_scaling</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">fourier_transform_daubechies_scaling</span><span class="special">;</span>
<span class="comment">// Evaluate the Fourier transform of the 4-vanishing moment Daubechies scaling function at ω=1.8:</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="keyword">float</span><span class="special">></span> <span class="identifier">hat_phi</span> <span class="special">=</span> <span class="identifier">fourier_transform_daubechies_scaling</span><span class="special"><</span><span class="keyword">float</span><span class="special">,</span> <span class="number">4</span><span class="special">>(</span><span class="number">1.8f</span><span class="special">);</span>
</pre>
<p>
The Fourier transform convention is unitary with the sign of the imaginary
unit being given in Daubechies Ten Lectures. In particular, this means that
<code class="computeroutput"><span class="identifier">fourier_transform_daubechies_scaling</span><span class="special"><</span><span class="keyword">float</span><span class="special">,</span>
<span class="identifier">p</span><span class="special">>(</span><span class="number">0.0</span><span class="special">)</span></code> returns
1/sqrt(2π).
</p>
<p>
The implementation computes an infinite product of trigonometric polynomials
as can be found from recursive application of the identity 𝓕[φ](ω) = m(ω/2)𝓕[φ](ω/2).
This is neither particularly fast nor accurate, but there appears to be no
literature on this extremely useful topic, and hence the naive method must
suffice.
</p>
<p>
<span class="inlinemediaobject"><img src="../../graphs/fourier_transform_daubechies.png"></span>
</p>
<p>
A benchmark can be found in <code class="computeroutput"><span class="identifier">reporting</span><span class="special">/</span><span class="identifier">performance</span><span class="special">/</span><span class="identifier">fourier_transform_daubechies_performance</span><span class="special">.</span><span class="identifier">cpp</span></code>; the
results on a ~2021 M1 Macbook pro are presented below:
</p>
<p>
Run on (10 X 24.1212 MHz CPU s) CPU Caches: L1 Data 64 KiB (x10) L1 Instruction
128 KiB (x10) L2 Unified 4096 KiB (x5) Load Average: 1.33, 1.52, 1.62 -----------------------------------------------------------
Benchmark Time -----------------------------------------------------------
FourierTransformDaubechiesScaling<double, 1> 70.3 ns FourierTransformDaubechiesScaling<double,
2> 330 ns FourierTransformDaubechiesScaling<double, 3> 335 ns FourierTransformDaubechiesScaling<double,
4> 364 ns FourierTransformDaubechiesScaling<double, 5> 386 ns FourierTransformDaubechiesScaling<double,
6> 436 ns FourierTransformDaubechiesScaling<double, 7> 447 ns FourierTransformDaubechiesScaling<double,
8> 473 ns FourierTransformDaubechiesScaling<double, 9> 503 ns FourierTransformDaubechiesScaling<double,
10> 554 ns
</p>
<p>
Due to the low accuracy of this method, <code class="computeroutput"><span class="keyword">float</span></code>
precision is arg-promoted to <code class="computeroutput"><span class="keyword">double</span></code>,
and hence takes just as long as <code class="computeroutput"><span class="keyword">double</span></code>
precision to execute.
</p>
<h4>
<a name="math_toolkit.daubechies.h1"></a>
<span class="phrase"><a name="math_toolkit.daubechies.references"></a></span><a class="link" href="daubechies.html#math_toolkit.daubechies.references">References</a>
</h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Daubechies, Ingrid. <span class="emphasis"><em>Ten Lectures on Wavelets.</em></span> Vol.
61. Siam, 1992.
</li>
<li class="listitem">
Mallat, Stephane. <span class="emphasis"><em>A Wavelet Tour of Signal Processing: the sparse
way</em></span> Academic press, 2008.
</li>
<li class="listitem">
Thompson, Nicholas, Maddock, John et al. <span class="emphasis"><em>Towards 1ULP Evaluation
of Daubechies Wavelets</em></span> https://arxiv.org/ftp/arxiv/papers/2005/2005.05424.pdf
</li>
</ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="owens_t.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="ccmath.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|