File: differential_evolution.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (266 lines) | stat: -rw-r--r-- 26,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Differential Evolution</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../optimization.html" title="Chapter 11. Optimization">
<link rel="prev" href="../optimization.html" title="Chapter 11. Optimization">
<link rel="next" href="jso.html" title="Algorithm jSO">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../optimization.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../optimization.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jso.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.differential_evolution"></a><a class="link" href="differential_evolution.html" title="Differential Evolution">Differential Evolution</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.differential_evolution.h0"></a>
      <span class="phrase"><a name="math_toolkit.differential_evolution.synopsis"></a></span><a class="link" href="differential_evolution.html#math_toolkit.differential_evolution.synopsis">Synopsis</a>
    </h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">optimization</span><span class="special">/</span><span class="identifier">differential_evolution</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>

<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">optimization</span> <span class="special">{</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">differential_evolution_parameters</span> <span class="special">{</span>
    <span class="keyword">using</span> <span class="identifier">Real</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">;</span>
    <span class="identifier">ArgumentContainer</span> <span class="identifier">lower_bounds</span><span class="special">;</span>
    <span class="identifier">ArgumentContainer</span> <span class="identifier">upper_bounds</span><span class="special">;</span>
    <span class="identifier">Real</span> <span class="identifier">mutation_factor</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;(</span><span class="number">0.65</span><span class="special">);</span>
    <span class="keyword">double</span> <span class="identifier">crossover_probability</span> <span class="special">=</span> <span class="number">0.5</span><span class="special">;</span>
    <span class="comment">// Population in each generation:</span>
    <span class="identifier">size_t</span> <span class="identifier">NP</span> <span class="special">=</span> <span class="number">200</span><span class="special">;</span>
    <span class="identifier">size_t</span> <span class="identifier">max_generations</span> <span class="special">=</span> <span class="number">1000</span><span class="special">;</span>
    <span class="identifier">size_t</span> <span class="identifier">threads</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">thread</span><span class="special">::</span><span class="identifier">hardware_concurrency</span><span class="special">();</span>
    <span class="identifier">ArgumentContainer</span> <span class="keyword">const</span> <span class="special">*</span> <span class="identifier">initial_guess</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">;</span>
<span class="special">};</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Func</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">URBG</span><span class="special">&gt;</span>
<span class="identifier">ArgumentContainer</span> <span class="identifier">differential_evolution</span><span class="special">(</span>
    <span class="keyword">const</span> <span class="identifier">Func</span> <span class="identifier">cost_function</span><span class="special">,</span> <span class="identifier">differential_evolution_parameters</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">de_params</span><span class="special">,</span> <span class="identifier">URBG</span> <span class="special">&amp;</span><span class="identifier">g</span><span class="special">,</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="identifier">target_value</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;::</span><span class="identifier">quiet_NaN</span><span class="special">(),</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="special">*</span><span class="identifier">cancellation</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;&gt;</span> <span class="special">*</span><span class="identifier">queries</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
    <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;</span> <span class="special">*</span><span class="identifier">current_minimum_cost</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>

<span class="special">}</span> <span class="comment">// namespaces</span>
</pre>
<p>
      The <code class="computeroutput"><span class="identifier">differential_evolution</span></code>
      function provides an implementation of the (classical) differential evolution
      optimization algorithm, often going by the label <code class="computeroutput"><span class="identifier">de</span><span class="special">/</span><span class="identifier">rand</span><span class="special">/</span><span class="identifier">bin</span><span class="special">/</span><span class="number">1</span></code>.
      It is capable of minimizing a cost function defined on a continuous space represented
      by a set of bounds. This function has been designed more for progress observability,
      graceful cancellation, and post-hoc data analysis than for speed of convergence.
      We justify this design choice by reference to the "No free lunch"
      theorem of Wolpert and Macready, which establishes "that for any algorithm,
      any elevated performance over one class of problems is offset by performance
      over another class".
    </p>
<h4>
<a name="math_toolkit.differential_evolution.h1"></a>
      <span class="phrase"><a name="math_toolkit.differential_evolution.parameters"></a></span><a class="link" href="differential_evolution.html#math_toolkit.differential_evolution.parameters">Parameters</a>
    </h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lower_bounds</span></code>: A container
          representing the lower bounds of the optimization space along each dimension.
          The <code class="computeroutput"><span class="special">.</span><span class="identifier">size</span><span class="special">()</span></code> of the bounds should return the dimension
          of the problem.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">upper_bounds</span></code>: A container
          representing the upper bounds of the optimization space along each dimension.
          It should have the same size of <code class="computeroutput"><span class="identifier">lower_bounds</span></code>,
          and each element should be &gt;= the corresponding element of <code class="computeroutput"><span class="identifier">lower_bounds</span></code>.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">mutation_factor</span></code>: Also known
          as <code class="computeroutput"><span class="identifier">F</span></code> or scale factor in
          the literature. It controls the rate at which the population evolves (default
          is 0.65).
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">crossover_probability</span></code>:
          The crossover probability determining the trade-off between exploration
          and exploitation (default is 0.5).
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">NP</span></code>: The population size
          (default is 200). Parallelization occurs over the population, so this should
          be "large".
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">max_generations</span></code>: The maximum
          number of generations for the optimization (default is 1000).
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">threads</span></code>: The number of
          threads to use for parallelization (default is the hardware concurrency).
          If the objective function is already multithreaded, then this should be
          set to 1 to prevent oversubscription.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">initial_guess</span></code>: An optional
          guess for where we should start looking for solutions.
        </li>
</ul></div>
<p>
      The defaults were chosen by a reading of Price, Storn, and Lampinen, chapter
      3, with the exception of the population size, which we have chosen a bit larger
      than they found as core counts have increased since publication of this reference
      and parallelization occurs within each generation. Note that there is a tradeoff
      between finding global minima and convergence speed. The most robust way of
      decreasing the probability of getting stuck in a local minima is to increase
      the population size.
    </p>
<h4>
<a name="math_toolkit.differential_evolution.h2"></a>
      <span class="phrase"><a name="math_toolkit.differential_evolution.the_function"></a></span><a class="link" href="differential_evolution.html#math_toolkit.differential_evolution.the_function">The
      function</a>
    </h4>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Func</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">URBG</span><span class="special">&gt;</span>
<span class="identifier">ArgumentContainer</span> <span class="identifier">differential_evolution</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Func</span> <span class="identifier">cost_function</span><span class="special">,</span>
                                         <span class="identifier">differential_evolution_parameters</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">de_params</span><span class="special">,</span>
                                         <span class="identifier">URBG</span> <span class="special">&amp;</span><span class="identifier">gen</span><span class="special">,</span>
                                         <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="identifier">value_to_reach</span>
                                           <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;::</span><span class="identifier">quiet_NaN</span><span class="special">(),</span>
                                         <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="special">*</span><span class="identifier">cancellation</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
                                         <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;&gt;</span> <span class="special">*</span><span class="identifier">queries</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
                                         <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;</span> <span class="special">*</span><span class="identifier">current_minimum_cost</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">)</span>
</pre>
<p>
      Parameters:
    </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          <code class="computeroutput"><span class="identifier">cost_function</span></code>: The cost
          function to be minimized.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">de_params</span></code>: The parameters
          to the algorithm as described above.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">rng</span></code>: A uniform random bit
          generator, like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">mt19937_64</span></code>.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">value_to_reach</span></code>: An optional
          value that, if reached, stops the optimization. This is the most robust
          way to terminate the calculation, but in most cases the optimal value of
          the cost function is unknown. If it is, use it! See the referenced book
          for clear examples of when target values can be deduced.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">cancellation</span></code>: An optional
          atomic boolean to allow the user to stop the computation and gracefully
          return the best result found up to that point. N.B.: Cancellation is not
          immediate; the in-progress generation finishes.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">queries</span></code>: An optional vector
          to store intermediate results during optimization. This is useful for debugging
          and perhaps volume rendering of the objective function after the calculation
          is complete.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">current_minimum_cost</span></code>: An
          optional atomic variable to store the current minimum cost during optimization.
          This allows developers to (e.g.) plot the progress of the minimization
          over time and in conjunction with the cancellation argument allow halting
          the computation when the progress stagnates. Refer to Price, Storn, and
          Lampinen, Section 3.2 for caveats with this approach.
        </li>
</ul></div>
<p>
      Returns:
    </p>
<p>
      The <code class="computeroutput"><span class="identifier">ArgumentContainer</span></code> corresponding
      to the minimum cost found by the optimization.
    </p>
<p>
      N.B.: The termination criteria is an "OR", not an "AND".
      So if the maximum generations is hit, the iteration stops, even if (say) a
      <code class="computeroutput"><span class="identifier">value_to_reach</span></code> has not been
      attained.
    </p>
<h5>
<a name="math_toolkit.differential_evolution.h3"></a>
      <span class="phrase"><a name="math_toolkit.differential_evolution.examples"></a></span><a class="link" href="differential_evolution.html#math_toolkit.differential_evolution.examples">Examples</a>
    </h5>
<p>
      An example use can be found <a href="../../../example/differential_evolution.cpp" target="_top">here</a>.
      More examples and API use cases can be studied in <a href="../../../test/differential_evolution_test.cpp" target="_top">differential_evolution_test.cpp</a>.
    </p>
<h6>
<a name="math_toolkit.differential_evolution.h4"></a>
      <span class="phrase"><a name="math_toolkit.differential_evolution.caveats"></a></span><a class="link" href="differential_evolution.html#math_toolkit.differential_evolution.caveats">Caveats</a>
    </h6>
<p>
      We have decided to only support classic <code class="computeroutput"><span class="identifier">de</span><span class="special">/</span><span class="identifier">rand</span><span class="special">/</span><span class="number">1</span><span class="special">/</span><span class="identifier">bin</span></code>
      because there are too many parameters for this class as it stands, and we have
      not seen benchmarks that indicate that other variants of the algorithm perform
      better. If a compelling usecase is provided, support for the <code class="computeroutput"><span class="identifier">de</span><span class="special">/</span><span class="identifier">x</span><span class="special">/</span><span class="identifier">y</span><span class="special">/</span><span class="identifier">z</span></code> variants can be added.
    </p>
<p>
      Supported termination criteria are explicit requests for termination, value-to-reach,
      and max generations. Price, Storn, and Lampinen, Section 2.8 also list population
      statistics and lack of accepted trials over many generations as sensible termination
      criteria. These could be supported if there is demand.
    </p>
<p>
      Parallelization with <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">thread</span></code> does have overhead-especially for
      very fast function calls. We found that the function call needs to be roughly
      a microsecond for unambigous parallelization wins. However, we have not provided
      conditional parallelization as computationally inexpensive cost functions are
      the exception; not the rule. If there is a clear use case for conditional parallelization
      (cheap cost function in very high dimensions is a good example), we can provide
      it.
    </p>
<h5>
<a name="math_toolkit.differential_evolution.h5"></a>
      <span class="phrase"><a name="math_toolkit.differential_evolution.references"></a></span><a class="link" href="differential_evolution.html#math_toolkit.differential_evolution.references">References</a>
    </h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          Price, Kenneth, Rainer M. Storn, and Jouni A. Lampinen. <span class="emphasis"><em>Differential
          evolution: a practical approach to global optimization.</em></span> Springer
          Science &amp; Business Media, 2006.
        </li>
<li class="listitem">
          D. H. Wolpert and W. G. Macready, <span class="emphasis"><em>No free lunch theorems for
          optimization.</em></span> IEEE Transactions on Evolutionary Computation,
          vol. 1, no. 1, pp. 67-82, April 1997, doi: 10.1109/4235.585893.
        </li>
</ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="../optimization.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../optimization.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="jso.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>