1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Fourier Integrals</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../quadrature.html" title="Chapter 14. Quadrature and Differentiation">
<link rel="prev" href="double_exponential/de_refes.html" title="References">
<link rel="next" href="naive_monte_carlo.html" title="Naive Monte Carlo Integration">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="double_exponential/de_refes.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.fourier_integrals"></a><a class="link" href="fourier_integrals.html" title="Fourier Integrals">Fourier Integrals</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.fourier_integrals.h0"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.synopsis"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.synopsis">Synopsis</a>
</h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">quadrature</span><span class="special">/</span><span class="identifier">ooura_fourier_integrals</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
<span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">quadrature</span> <span class="special">{</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">ooura_fourier_sin</span> <span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">ooura_fourier_sin</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">relative_error_tolerance</span> <span class="special">=</span> <span class="identifier">tools</span><span class="special">::</span><span class="identifier">root_epsilon</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>(),</span> <span class="identifier">size_t</span> <span class="identifier">levels</span> <span class="special">=</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">Real</span><span class="special">));</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">></span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">omega</span><span class="special">);</span>
<span class="special">};</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">Real</span><span class="special">></span>
<span class="keyword">class</span> <span class="identifier">ooura_fourier_cos</span> <span class="special">{</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">ooura_fourier_cos</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">relative_error_tolerance</span> <span class="special">=</span> <span class="identifier">tools</span><span class="special">::</span><span class="identifier">root_epsilon</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>(),</span> <span class="identifier">size_t</span> <span class="identifier">levels</span> <span class="special">=</span> <span class="keyword">sizeof</span><span class="special">(</span><span class="identifier">Real</span><span class="special">))</span>
<span class="keyword">template</span><span class="special"><</span><span class="keyword">class</span> <span class="identifier">F</span><span class="special">></span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">Real</span><span class="special">,</span> <span class="identifier">Real</span><span class="special">></span> <span class="identifier">integrate</span><span class="special">(</span><span class="identifier">F</span> <span class="keyword">const</span> <span class="special">&</span> <span class="identifier">f</span><span class="special">,</span> <span class="identifier">Real</span> <span class="identifier">omega</span><span class="special">);</span>
<span class="special">};</span>
<span class="special">}}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
Ooura's method for Fourier integrals computes
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic">∫<sub>0</sub><sup>∞</sup> f(t)sin(ω t) dt</span>
</p></blockquote></div>
<p>
and
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic">∫<sub>0</sub><sup>∞</sup> f(t)cos(ω t) dt</span>
</p></blockquote></div>
<p>
by a double exponentially decaying transformation. These integrals arise when
computing continuous Fourier transform of odd and even functions, respectively.
Oscillatory integrals are known to cause trouble for standard quadrature methods,
so these routines are provided to cope with the most common oscillatory use
case.
</p>
<p>
The basic usage is shown below:
</p>
<pre class="programlisting"><span class="identifier">ooura_fourier_sin</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span><span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_sin</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
<span class="comment">// Use the default tolerance root_epsilon and eight levels for type double.</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span>
<span class="special">{</span> <span class="comment">// Simple reciprocal function for sinc.</span>
<span class="keyword">return</span> <span class="number">1</span> <span class="special">/</span> <span class="identifier">x</span><span class="special">;</span>
<span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="keyword">double</span><span class="special">,</span> <span class="keyword">double</span><span class="special">></span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Integral = "</span> <span class="special"><<</span> <span class="identifier">result</span><span class="special">.</span><span class="identifier">first</span> <span class="special"><<</span> <span class="string">", relative error estimate "</span> <span class="special"><<</span> <span class="identifier">result</span><span class="special">.</span><span class="identifier">second</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
and compare with the expected value π/2 of the integral.
</p>
<pre class="programlisting"><span class="keyword">constexpr</span> <span class="keyword">double</span> <span class="identifier">expected</span> <span class="special">=</span> <span class="identifier">half_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"pi/2 = "</span> <span class="special"><<</span> <span class="identifier">expected</span> <span class="special"><<</span> <span class="string">", difference "</span> <span class="special"><<</span> <span class="identifier">result</span><span class="special">.</span><span class="identifier">first</span> <span class="special">-</span> <span class="identifier">expected</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
The output is
</p>
<pre class="programlisting"><span class="identifier">integral</span> <span class="special">=</span> <span class="number">1.5707963267948966</span><span class="special">,</span> <span class="identifier">relative</span> <span class="identifier">error</span> <span class="identifier">estimate</span> <span class="number">1.2655356398390254e-11</span>
<span class="identifier">pi</span><span class="special">/</span><span class="number">2</span> <span class="special">=</span> <span class="number">1.5707963267948966</span><span class="special">,</span> <span class="identifier">difference</span> <span class="number">0</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
This integrator is more insistent about examining the error estimate, than
(say) tanh-sinh, which just returns the value of the integral.
</p></td></tr>
</table></div>
<p>
With the macro BOOST_MATH_INSTRUMENT_OOURA defined, we can follow the progress:
</p>
<pre class="programlisting"><span class="identifier">ooura_fourier_sin</span> <span class="identifier">with</span> <span class="identifier">relative</span> <span class="identifier">error</span> <span class="identifier">goal</span> <span class="number">1.4901161193847656e-08</span> <span class="special">&</span> <span class="number">8</span> <span class="identifier">levels</span><span class="special">.</span>
<span class="identifier">h</span> <span class="special">=</span> <span class="number">1.000000000000000</span><span class="special">,</span> <span class="identifier">I_h</span> <span class="special">=</span> <span class="number">1.571890732004545</span> <span class="special">=</span> <span class="number">0x1</span><span class="special">.</span><span class="number">92676e56d</span><span class="number">853500</span><span class="identifier">p</span><span class="special">+</span><span class="number">0</span><span class="special">,</span> <span class="identifier">absolute</span> <span class="identifier">error</span> <span class="identifier">estimate</span> <span class="special">=</span> <span class="identifier">nan</span>
<span class="identifier">h</span> <span class="special">=</span> <span class="number">0.500000000000000</span><span class="special">,</span> <span class="identifier">I_h</span> <span class="special">=</span> <span class="number">1.570793292491940</span> <span class="special">=</span> <span class="number">0x1</span><span class="special">.</span><span class="number">921f</span><span class="number">825</span><span class="identifier">c076f600p</span><span class="special">+</span><span class="number">0</span><span class="special">,</span> <span class="identifier">absolute</span> <span class="identifier">error</span> <span class="identifier">estimate</span> <span class="special">=</span> <span class="number">1.097439512605325e-03</span>
<span class="identifier">h</span> <span class="special">=</span> <span class="number">0.250000000000000</span><span class="special">,</span> <span class="identifier">I_h</span> <span class="special">=</span> <span class="number">1.570796326814776</span> <span class="special">=</span> <span class="number">0x1</span><span class="special">.</span><span class="number">921f</span><span class="identifier">b54458acf00p</span><span class="special">+</span><span class="number">0</span><span class="special">,</span> <span class="identifier">absolute</span> <span class="identifier">error</span> <span class="identifier">estimate</span> <span class="special">=</span> <span class="number">3.034322835882008e-06</span>
<span class="identifier">h</span> <span class="special">=</span> <span class="number">0.125000000000000</span><span class="special">,</span> <span class="identifier">I_h</span> <span class="special">=</span> <span class="number">1.570796326794897</span> <span class="special">=</span> <span class="number">0x1</span><span class="special">.</span><span class="number">921f</span><span class="identifier">b54442d1800p</span><span class="special">+</span><span class="number">0</span><span class="special">,</span> <span class="identifier">absolute</span> <span class="identifier">error</span> <span class="identifier">estimate</span> <span class="special">=</span> <span class="number">1.987898734512328e-11</span>
<span class="identifier">Integral</span> <span class="special">=</span> <span class="number">1.570796326794897e+00</span><span class="special">,</span> <span class="identifier">relative</span> <span class="identifier">error</span> <span class="identifier">estimate</span> <span class="number">1.265535639839025e-11</span>
<span class="identifier">pi</span><span class="special">/</span><span class="number">2</span> <span class="special">=</span> <span class="number">1.570796326794897e+00</span><span class="special">,</span> <span class="identifier">difference</span> <span class="number">0.000000000000000e+00</span>
</pre>
<p>
Working code of this example is at <a href="../../../example/ooura_fourier_integrals_example.cpp" target="_top">ooura_fourier_integrals_example.cpp</a>
</p>
<p>
A classical cosine transform is presented below:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_cos</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
<span class="comment">// Use the default tolerance root_epsilon and eight levels for type double.</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">)</span>
<span class="special">{</span> <span class="comment">// More complex example function.</span>
<span class="keyword">return</span> <span class="number">1</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">*</span> <span class="identifier">x</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>
<span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">result</span><span class="special">,</span> <span class="identifier">relative_error</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Integral = "</span> <span class="special"><<</span> <span class="identifier">result</span> <span class="special"><<</span> <span class="string">", relative error estimate "</span> <span class="special"><<</span> <span class="identifier">relative_error</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
The value of this integral should be π/(2e) and can be shown :
</p>
<pre class="programlisting"><span class="keyword">constexpr</span> <span class="keyword">double</span> <span class="identifier">expected</span> <span class="special">=</span> <span class="identifier">half_pi</span><span class="special"><</span><span class="keyword">double</span><span class="special">>()</span> <span class="special">/</span> <span class="identifier">e</span><span class="special"><</span><span class="keyword">double</span><span class="special">>();</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"pi/(2e) = "</span> <span class="special"><<</span> <span class="identifier">expected</span> <span class="special"><<</span> <span class="string">", difference "</span> <span class="special"><<</span> <span class="identifier">result</span> <span class="special">-</span> <span class="identifier">expected</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
or with the macro BOOST_MATH_INSTRUMENT_OOURA defined, we can follow the progress:
</p>
<pre class="programlisting">
ooura_fourier_cos with relative error goal 1.4901161193847656e-08 & 8 levels.
epsilon for type = 2.2204460492503131e-16
h = 1.000000000000000, I_h = 0.588268622591776 = 0x1.2d318b7e96dbe00p-1, absolute error estimate = nan
h = 0.500000000000000, I_h = 0.577871642184837 = 0x1.27decab8f07b200p-1, absolute error estimate = 1.039698040693926e-02
h = 0.250000000000000, I_h = 0.577863671186883 = 0x1.27ddbf42969be00p-1, absolute error estimate = 7.970997954576120e-06
h = 0.125000000000000, I_h = 0.577863674895461 = 0x1.27ddbf6271dc000p-1, absolute error estimate = 3.708578555361441e-09
Integral = 5.778636748954611e-01, relative error estimate 6.417739540441515e-09
pi/(2e) = 5.778636748954609e-01, difference 2.220446049250313e-16
</pre>
<p>
Working code of this example is at <a href="../../../example/ooura_fourier_integrals_cosine_example.cpp" target="_top">ooura_fourier_integrals_consine_example.cpp</a>
</p>
<h6>
<a name="math_toolkit.fourier_integrals.h1"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.performance"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.performance">Performance</a>
</h6>
<p>
The integrator precomputes nodes and weights, and hence can be reused for many
different frequencies with good efficiency. The integrator is pimpl'd and hence
can be shared between threads without a <code class="computeroutput"><span class="identifier">memcpy</span></code>
of the nodes and weights.
</p>
<p>
Ooura and Mori's paper identifies criteria for rapid convergence based on the
position of the poles of the integrand in the complex plane. If these poles
are too close to the real axis the convergence is slow. It is not trivial to
predict the convergence rate a priori, so if you are interested in figuring
out if the convergence is rapid, compile with <code class="computeroutput"><span class="special">-</span><span class="identifier">DBOOST_MATH_INSTRUMENT_OOURA</span></code> and some amount
of printing will give you a good idea of how well this method is performing.
</p>
<h6>
<a name="math_toolkit.fourier_integrals.h2"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.multi_precision"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.multi_precision">Higher
precision</a>
</h6>
<p>
It is simple to extend to higher precision using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
</p>
<pre class="programlisting"><span class="comment">// Use the default parameters for tolerance root_epsilon and eight levels for a type of 8 bytes.</span>
<span class="comment">//auto integrator = ooura_fourier_cos<Real>();</span>
<span class="comment">// Decide on a (tight) tolerance.</span>
<span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">tol</span> <span class="special">=</span> <span class="number">2</span> <span class="special">*</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">();</span>
<span class="keyword">auto</span> <span class="identifier">integrator</span> <span class="special">=</span> <span class="identifier">ooura_fourier_cos</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>(</span><span class="identifier">tol</span><span class="special">,</span> <span class="number">8</span><span class="special">);</span> <span class="comment">// Loops or gets worse for more than 8.</span>
<span class="keyword">auto</span> <span class="identifier">f</span> <span class="special">=</span> <span class="special">[](</span><span class="identifier">Real</span> <span class="identifier">x</span><span class="special">)</span>
<span class="special">{</span> <span class="comment">// More complex example function.</span>
<span class="keyword">return</span> <span class="number">1</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">x</span> <span class="special">*</span> <span class="identifier">x</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>
<span class="special">};</span>
<span class="keyword">double</span> <span class="identifier">omega</span> <span class="special">=</span> <span class="number">1</span><span class="special">;</span>
<span class="keyword">auto</span> <span class="special">[</span><span class="identifier">result</span><span class="special">,</span> <span class="identifier">relative_error</span><span class="special">]</span> <span class="special">=</span> <span class="identifier">integrator</span><span class="special">.</span><span class="identifier">integrate</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">omega</span><span class="special">);</span>
</pre>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Integral = "</span> <span class="special"><<</span> <span class="identifier">result</span> <span class="special"><<</span> <span class="string">", relative error estimate "</span> <span class="special"><<</span> <span class="identifier">relative_error</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">const</span> <span class="identifier">Real</span> <span class="identifier">expected</span> <span class="special">=</span> <span class="identifier">half_pi</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>()</span> <span class="special">/</span> <span class="identifier">e</span><span class="special"><</span><span class="identifier">Real</span><span class="special">>();</span> <span class="comment">// Expect integral = 1/(2e)</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"pi/(2e) = "</span> <span class="special"><<</span> <span class="identifier">expected</span> <span class="special"><<</span> <span class="string">", difference "</span> <span class="special"><<</span> <span class="identifier">result</span> <span class="special">-</span> <span class="identifier">expected</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
with output:
</p>
<pre class="programlisting">
Integral = 0.5778636748954608589550465916563501587, relative error estimate 4.609814684522163895264277312610830278e-17
pi/(2e) = 0.5778636748954608659545328919193707407, difference -6.999486300263020581921171645255733758e-18
</pre>
<p>
And with diagnostics on:
</p>
<pre class="programlisting">
ooura_fourier_cos with relative error goal 3.851859888774471706111955885169854637e-34 & 15 levels.
epsilon for type = 1.925929944387235853055977942584927319e-34
h = 1.000000000000000000000000000000000, I_h = 0.588268622591776615359568690603776 = 0.5882686225917766153595686906037760, absolute error estimate = nan
h = 0.500000000000000000000000000000000, I_h = 0.577871642184837461311756940493259 = 0.5778716421848374613117569404932595, absolute error estimate = 1.039698040693915404781175011051656e-02
h = 0.250000000000000000000000000000000, I_h = 0.577863671186882539559996800783122 = 0.5778636711868825395599968007831220, absolute error estimate = 7.970997954921751760139710137450075e-06
h = 0.125000000000000000000000000000000, I_h = 0.577863674895460885593491133506723 = 0.5778636748954608855934911335067232, absolute error estimate = 3.708578346033494332723601147051768e-09
h = 0.062500000000000000000000000000000, I_h = 0.577863674895460858955046591656350 = 0.5778636748954608589550465916563502, absolute error estimate = 2.663844454185037302771663314961535e-17
h = 0.031250000000000000000000000000000, I_h = 0.577863674895460858955046591656348 = 0.5778636748954608589550465916563484, absolute error estimate = 1.733336949948512267750380148326435e-33
h = 0.015625000000000000000000000000000, I_h = 0.577863674895460858955046591656348 = 0.5778636748954608589550465916563479, absolute error estimate = 4.814824860968089632639944856462318e-34
h = 0.007812500000000000000000000000000, I_h = 0.577863674895460858955046591656347 = 0.5778636748954608589550465916563473, absolute error estimate = 6.740754805355325485695922799047246e-34
h = 0.003906250000000000000000000000000, I_h = 0.577863674895460858955046591656347 = 0.5778636748954608589550465916563475, absolute error estimate = 1.925929944387235853055977942584927e-34
Integral = 5.778636748954608589550465916563475e-01, relative error estimate 3.332844800697411177051445985473052e-34
pi/(2e) = 5.778636748954608589550465916563481e-01, difference -6.740754805355325485695922799047246e-34
</pre>
<p>
Working code of this example is at <a href="../../../example/ooura_fourier_integrals_multiprecision_example.cpp" target="_top">ooura_fourier_integrals_multiprecision_example.cpp</a>
</p>
<p>
For more examples of other functions and tests, see the full test suite at
<a href="../../../test/ooura_fourier_integral_test.cpp" target="_top">ooura_fourier_integral_test.cpp</a>.
</p>
<p>
Ngyen and Nuyens make use of <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
in their extension to multiple dimensions, showing relative errors reducing
to ≅ 10<sup>-2000</sup>!
</p>
<h6>
<a name="math_toolkit.fourier_integrals.h3"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.rationale"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.rationale">Rationale</a>
</h6>
<p>
This implementation is base on Ooura's 1999 paper rather than the later 2005
paper. It does not preclude a second future implementation based on the later
work.
</p>
<p>
Some of the features of the Ooura's 2005 paper that were less appealing were:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
The advance of that paper is that one can compute <span class="emphasis"><em>both</em></span>
the Fourier sine transform and Fourier cosine transform in a single shot.
But there are examples, like sinc integral, where the Fourier sine would
converge, but the Fourier cosine would diverge.
</li>
<li class="listitem">
It would force users to live in the complex plane, when many potential
applications only need real.
</li>
</ul></div>
<h5>
<a name="math_toolkit.fourier_integrals.h4"></a>
<span class="phrase"><a name="math_toolkit.fourier_integrals.references"></a></span><a class="link" href="fourier_integrals.html#math_toolkit.fourier_integrals.references">References</a>
</h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Ooura, Takuya, and Masatake Mori, <span class="emphasis"><em>A robust double exponential
formula for Fourier-type integrals.</em></span> Journal of computational
and applied mathematics, 112.1-2 (1999): 229-241.
</li>
<li class="listitem">
Ooura, Takuya, <span class="emphasis"><em>A Double Exponential Formula for the Fourier Transforms.</em></span>
Publ. RIMS, Kyoto Univ., 41 (2005), 971-977. <a href="https://pdfs.semanticscholar.org/16ec/a5d76fd6b3d7acaaff0b2a6e8a70caa70190.pdf" target="_top">https://pdfs.semanticscholar.org/16ec/a5d76fd6b3d7acaaff0b2a6e8a70caa70190.pdf</a>
</li>
<li class="listitem">
Khatibi, Arezoo and Khatibi, Omid,<span class="emphasis"><em>Criteria for the Application
of Double Exponential Transformation.</em></span> (2017) <a href="https://arxiv.org/pdf/1704.05752.pdf" target="_top">1704.05752.pdf</a>.
</li>
<li class="listitem">
Nguyen, Dong T.P. and Nuyens, Dirk, <span class="emphasis"><em>Multivariate integration
over Reals with exponential rate of convergence.</em></span> (2016) <a href="https://core.ac.uk/download/pdf/80799199.pdf" target="_top">https://core.ac.uk/download/pdf/80799199.pdf</a>.
</li>
</ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="double_exponential/de_refes.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quadrature.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="naive_monte_carlo.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|