1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Continued Fraction Evaluation</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../internals.html" title="Internal tools">
<link rel="prev" href="agm.html" title="Arithmetic-Geometric Mean">
<link rel="next" href="simple_continued_fraction.html" title="Simple Continued Fractions">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="agm.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="simple_continued_fraction.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.internals.cf"></a><a class="link" href="cf.html" title="Continued Fraction Evaluation">Continued Fraction Evaluation</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.internals.cf.h0"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.synopsis"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">fraction</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tools</span><span class="special">{</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_terms</span><span class="special">)</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&</span> <span class="identifier">tolerance</span><span class="special">)</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&</span> <span class="identifier">tolerance</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_terms</span><span class="special">)</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">U</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">U</span><span class="special">&</span> <span class="identifier">tolerance</span><span class="special">)</span>
<span class="comment">//</span>
<span class="comment">// These interfaces are present for legacy reasons, and are now deprecated:</span>
<span class="comment">//</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_terms</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Gen</span><span class="special">></span>
<span class="keyword">typename</span> <span class="identifier">detail</span><span class="special">::</span><span class="identifier">fraction_traits</span><span class="special"><</span><span class="identifier">Gen</span><span class="special">>::</span><span class="identifier">result_type</span>
<span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">Gen</span><span class="special">&</span> <span class="identifier">g</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">bits</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_terms</span><span class="special">);</span>
<span class="special">}}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.internals.cf.h1"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.description"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.description">Description</a>
</h5>
<p>
<a href="http://en.wikipedia.org/wiki/Continued_fraction" target="_top">Continued fractions
are a common method of approximation. </a> These functions all evaluate
the continued fraction described by the <span class="emphasis"><em>generator</em></span> type
argument. The functions with an "_a" suffix evaluate the fraction:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction2.svg"></span>
</p></blockquote></div>
<p>
and those with a "_b" suffix evaluate the fraction:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction1.svg"></span>
</p></blockquote></div>
<p>
This latter form is somewhat more natural in that it corresponds with the
usual definition of a continued fraction, but note that the first <span class="emphasis"><em>a</em></span>
value returned by the generator is discarded. Further, often the first <span class="emphasis"><em>a</em></span>
and <span class="emphasis"><em>b</em></span> values in a continued fraction have different
defining equations to the remaining terms, which may make the "_a"
suffixed form more appropriate.
</p>
<p>
The generator type should be a function object which supports the following
operations:
</p>
<div class="informaltable"><table class="table">
<colgroup>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Expression
</p>
</th>
<th>
<p>
Description
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Gen::result_type
</p>
</td>
<td>
<p>
The type that is the result of invoking operator(). This can be
either an arithmetic or complex type, or a std::pair<> of
arithmetic or complex types.
</p>
</td>
</tr>
<tr>
<td>
<p>
g()
</p>
</td>
<td>
<p>
Returns an object of type Gen::result_type.
</p>
<p>
Each time this operator is called then the next pair of <span class="emphasis"><em>a</em></span>
and <span class="emphasis"><em>b</em></span> values is returned. Or, if result_type
is an arithmetic type, then the next <span class="emphasis"><em>b</em></span> value
is returned and all the <span class="emphasis"><em>a</em></span> values are assumed
to 1.
</p>
</td>
</tr>
</tbody>
</table></div>
<p>
In all the continued fraction evaluation functions the <span class="emphasis"><em>tolerance</em></span>
parameter is the precision desired in the result, evaluation of the fraction
will continue until the last term evaluated leaves the relative error in
the result less than <span class="emphasis"><em>tolerance</em></span>. The deprecated interfaces
take a number of digits precision here, internally they just convert this
to a tolerance and forward call.
</p>
<p>
If the optional <span class="emphasis"><em>max_terms</em></span> parameter is specified then
no more than <span class="emphasis"><em>max_terms</em></span> calls to the generator will be
made, and on output, <span class="emphasis"><em>max_terms</em></span> will be set to actual
number of calls made. This facility is particularly useful when profiling
a continued fraction for convergence.
</p>
<h5>
<a name="math_toolkit.internals.cf.h2"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.implementation"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.implementation">Implementation</a>
</h5>
<p>
Internally these algorithms all use the modified Lentz algorithm: refer to
Numeric Recipes in C++, W. H. Press et all, chapter 5, (especially 5.2 Evaluation
of continued fractions, p 175 - 179) for more information, also Lentz, W.J.
1976, Applied Optics, vol. 15, pp. 668-671.
</p>
<h5>
<a name="math_toolkit.internals.cf.h3"></a>
<span class="phrase"><a name="math_toolkit.internals.cf.examples"></a></span><a class="link" href="cf.html#math_toolkit.internals.cf.examples">Examples</a>
</h5>
<p>
All of these examples are in <a href="../../../../example/continued_fractions.cpp" target="_top">continued_fractions.cpp</a>.
</p>
<p>
The <a href="http://en.wikipedia.org/wiki/Golden_ratio" target="_top">golden ratio phi
= 1.618033989...</a> can be computed from the simplest continued fraction
of all:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction3.svg"></span>
</p></blockquote></div>
<p>
We begin by defining a generator function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">golden_ratio_fraction</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">T</span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="keyword">return</span> <span class="number">1</span><span class="special">;</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
The golden ratio can then be computed to double precision using:
</p>
<pre class="programlisting"><span class="identifier">golden_ratio_fraction</span><span class="special"><</span><span class="keyword">double</span><span class="special">></span> <span class="identifier">func</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">gr</span> <span class="special">=</span> <span class="identifier">continued_fraction_a</span><span class="special">(</span>
<span class="identifier">func</span><span class="special">,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"The golden ratio is: "</span> <span class="special"><<</span> <span class="identifier">gr</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
It's more usual though to have to define both the <span class="emphasis"><em>a</em></span>'s
and the <span class="emphasis"><em>b</em></span>'s when evaluating special functions by continued
fractions, for example the tan function is defined by:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/fraction4.svg"></span>
</p></blockquote></div>
<p>
So its generator object would look like:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">tan_fraction</span>
<span class="special">{</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="identifier">T</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="identifier">tan_fraction</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">v</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">a</span><span class="special">(-</span><span class="identifier">v</span> <span class="special">*</span> <span class="identifier">v</span><span class="special">),</span> <span class="identifier">b</span><span class="special">(-</span><span class="number">1</span><span class="special">)</span>
<span class="special">{}</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">></span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="identifier">b</span> <span class="special">+=</span> <span class="number">2</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">b</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
Notice that if the continuant is subtracted from the <span class="emphasis"><em>b</em></span>
terms, as is the case here, then all the <span class="emphasis"><em>a</em></span> terms returned
by the generator will be negative. The tangent function can now be evaluated
using:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">tan</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">a</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">tan_fraction</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">fract</span><span class="special">(</span><span class="identifier">a</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">a</span> <span class="special">/</span> <span class="identifier">continued_fraction_b</span><span class="special">(</span><span class="identifier">fract</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="special">}</span>
</pre>
<p>
Notice that this time we're using the "_b" suffixed version to
evaluate the fraction: we're removing the leading <span class="emphasis"><em>a</em></span>
term during fraction evaluation as it's different from all the others.
</p>
<p>
Now we'll look at a couple of complex number examples, starting with the
exponential integral which can be calculated via:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/expint_n_3.svg"></span>
</p></blockquote></div>
<p>
So our functor looks like this:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">expint_fraction</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">expint_fraction</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n_</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z_</span><span class="special">)</span> <span class="special">:</span> <span class="identifier">b</span><span class="special">(</span><span class="identifier">z_</span> <span class="special">+</span> <span class="identifier">T</span><span class="special">(</span><span class="identifier">n_</span><span class="special">)),</span> <span class="identifier">i</span><span class="special">(-</span><span class="number">1</span><span class="special">),</span> <span class="identifier">n</span><span class="special">(</span><span class="identifier">n_</span><span class="special">)</span> <span class="special">{}</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">></span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_pair</span><span class="special">(-</span><span class="keyword">static_cast</span><span class="special"><</span><span class="identifier">T</span><span class="special">>((</span><span class="identifier">i</span> <span class="special">+</span> <span class="number">1</span><span class="special">)</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">n</span> <span class="special">+</span> <span class="identifier">i</span><span class="special">)),</span> <span class="identifier">b</span><span class="special">);</span>
<span class="identifier">b</span> <span class="special">+=</span> <span class="number">2</span><span class="special">;</span>
<span class="special">++</span><span class="identifier">i</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="identifier">T</span> <span class="identifier">b</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">i</span><span class="special">;</span>
<span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">;</span>
<span class="special">};</span>
</pre>
<p>
We can finish the example by wrapping everything up in a function:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">inline</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">expint_as_fraction</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="keyword">const</span><span class="special">&</span> <span class="identifier">z</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span> <span class="identifier">max_iter</span> <span class="special">=</span> <span class="number">1000</span><span class="special">;</span>
<span class="identifier">expint_fraction</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">></span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">n</span><span class="special">,</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">result</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">continued_fraction_b</span><span class="special">(</span>
<span class="identifier">f</span><span class="special">,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">>(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">()),</span>
<span class="identifier">max_iter</span><span class="special">);</span>
<span class="identifier">result</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">result</span><span class="special">;</span>
<span class="keyword">return</span> <span class="identifier">result</span><span class="special">;</span>
<span class="special">}</span>
</pre>
<p>
Notice how the termination condition is still expressed as a complex number,
albeit one with zero imaginary part.
</p>
<p>
Our final example will use <code class="literal">continued_fraction_a</code>, in fact
there is only one special function in our code which uses that variant, and
it's the upper incomplete gamma function (Q), which can be calculated via:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/igamma9.svg"></span>
</p></blockquote></div>
<p>
In this case the first couple of terms are different from the rest, so our
fraction will start with the first "regular" a term:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">upper_incomplete_gamma_fract</span>
<span class="special">{</span>
<span class="keyword">private</span><span class="special">:</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">T</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">scalar_type</span><span class="special">;</span>
<span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="identifier">a</span><span class="special">;</span>
<span class="keyword">int</span> <span class="identifier">k</span><span class="special">;</span>
<span class="keyword">public</span><span class="special">:</span>
<span class="keyword">typedef</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special"><</span><span class="identifier">T</span><span class="special">,</span> <span class="identifier">T</span><span class="special">></span> <span class="identifier">result_type</span><span class="special">;</span>
<span class="identifier">upper_incomplete_gamma_fract</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">a1</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">z1</span><span class="special">)</span>
<span class="special">:</span> <span class="identifier">z</span><span class="special">(</span><span class="identifier">z1</span> <span class="special">-</span> <span class="identifier">a1</span> <span class="special">+</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="number">1</span><span class="special">)),</span> <span class="identifier">a</span><span class="special">(</span><span class="identifier">a1</span><span class="special">),</span> <span class="identifier">k</span><span class="special">(</span><span class="number">0</span><span class="special">)</span>
<span class="special">{</span>
<span class="special">}</span>
<span class="identifier">result_type</span> <span class="keyword">operator</span><span class="special">()()</span>
<span class="special">{</span>
<span class="special">++</span><span class="identifier">k</span><span class="special">;</span>
<span class="identifier">z</span> <span class="special">+=</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="number">2</span><span class="special">);</span>
<span class="keyword">return</span> <span class="identifier">result_type</span><span class="special">(</span><span class="identifier">scalar_type</span><span class="special">(</span><span class="identifier">k</span><span class="special">)</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">-</span> <span class="identifier">scalar_type</span><span class="special">(</span><span class="identifier">k</span><span class="special">)),</span> <span class="identifier">z</span><span class="special">);</span>
<span class="special">}</span>
<span class="special">};</span>
</pre>
<p>
So now we can implement Q, this time using <code class="literal">continued_fraction_a</code>:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="keyword">inline</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">gamma_Q_as_fraction</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">>&</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">>&</span> <span class="identifier">z</span><span class="special">)</span>
<span class="special">{</span>
<span class="identifier">upper_incomplete_gamma_fract</span><span class="special"><</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="special">></span> <span class="identifier">f</span><span class="special">(</span><span class="identifier">a</span><span class="special">,</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special"><</span><span class="identifier">T</span><span class="special">></span> <span class="identifier">eps</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">());</span>
<span class="keyword">return</span> <span class="identifier">pow</span><span class="special">(</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">a</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">*(</span><span class="identifier">z</span> <span class="special">-</span> <span class="identifier">a</span> <span class="special">+</span> <span class="identifier">T</span><span class="special">(</span><span class="number">1</span><span class="special">)</span> <span class="special">+</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">tools</span><span class="special">::</span><span class="identifier">continued_fraction_a</span><span class="special">(</span><span class="identifier">f</span><span class="special">,</span> <span class="identifier">eps</span><span class="special">)));</span>
<span class="special">}</span>
</pre>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="agm.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="simple_continued_fraction.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|