1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Tools For 3-Term Recurrence Relations</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../internals.html" title="Internal tools">
<link rel="prev" href="engel_expansion.html" title="Engel Expansion">
<link rel="next" href="cohen_acceleration.html" title="Cohen Acceleration">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="engel_expansion.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cohen_acceleration.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.internals.recurrence"></a><a class="link" href="recurrence.html" title="Tools For 3-Term Recurrence Relations">Tools For 3-Term Recurrence
Relations</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.internals.recurrence.h0"></a>
<span class="phrase"><a name="math_toolkit.internals.recurrence.synopsis"></a></span><a class="link" href="recurrence.html#math_toolkit.internals.recurrence.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">tools</span><span class="special">/</span><span class="identifier">recurrence</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tools</span><span class="special">{</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">function_ratio_from_backwards_recurrence</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&</span> <span class="identifier">factor</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_iter</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">function_ratio_from_forwards_recurrence</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&</span> <span class="identifier">factor</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_iter</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">NextCoefs</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">apply_recurrence_relation_forward</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NextCoefs</span><span class="special">&</span> <span class="identifier">get_coefs</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">number_of_steps</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">second</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">long</span><span class="special">*</span> <span class="identifier">log_scaling</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">previous</span> <span class="special">=</span> <span class="number">0</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">NextCoefs</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">apply_recurrence_relation_backward</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NextCoefs</span><span class="special">&</span> <span class="identifier">get_coefs</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">number_of_steps</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">second</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">long</span><span class="special">*</span> <span class="identifier">log_scaling</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">previous</span> <span class="special">=</span> <span class="number">0</span><span class="special">);</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">forward_recurrence_iterator</span><span class="special">;</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">backward_recurrence_iterator</span><span class="special">;</span>
<span class="special">}}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.internals.recurrence.h1"></a>
<span class="phrase"><a name="math_toolkit.internals.recurrence.description"></a></span><a class="link" href="recurrence.html#math_toolkit.internals.recurrence.description">Description</a>
</h5>
<p>
All of the tools in this header require a description of the recurrence relation:
this takes the form of a functor that returns a tuple containing the 3 coefficients,
specifically, given a recurrence relation:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../../equations/three_term_recurrence.svg"></span>
</p></blockquote></div>
<p>
And a functor <code class="computeroutput"><span class="identifier">F</span></code> then the
expression:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic">F(n);</span>
</p></blockquote></div>
<p>
Returns a tuple containing <span class="serif_italic">{ a<sub>n</sub>, b<sub>n</sub>, c<sub>n</sub> }</span>.
</p>
<p>
For example, the recurrence relation for the Bessel J and Y functions when
written in this form is:
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../equations/three_term_recurrence_bessel_jy.svg" width="250" height="38"></object></span>
</p>
<p>
Therefore, given local variables <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>v</em></span>
of type <code class="computeroutput"><span class="keyword">double</span></code> the recurrence
relation for Bessel J and Y can be encoded in a lambda expression like this:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">recurrence_functor_jy</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">int</span> <span class="identifier">n</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_tuple</span><span class="special">(</span><span class="number">1.0</span><span class="special">,</span> <span class="special">-</span><span class="number">2</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">v</span> <span class="special">+</span> <span class="identifier">n</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">x</span><span class="special">,</span> <span class="number">1.0</span><span class="special">);</span> <span class="special">};</span>
</pre>
<p>
Similarly, the Bessel I and K recurrence relation differs just by the sign
of the final term:
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../equations/three_term_recurrence_bessel_ik.svg" width="244" height="38"></object></span>
</p>
<p>
And this could be encoded as:
</p>
<pre class="programlisting"><span class="keyword">auto</span> <span class="identifier">recurrence_functor_ik</span> <span class="special">=</span> <span class="special">[&](</span><span class="keyword">int</span> <span class="identifier">n</span><span class="special">)</span> <span class="special">{</span> <span class="keyword">return</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">make_tuple</span><span class="special">(</span><span class="number">1.0</span><span class="special">,</span> <span class="special">-</span><span class="number">2</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">v</span> <span class="special">+</span> <span class="identifier">n</span><span class="special">)</span> <span class="special">/</span> <span class="identifier">x</span><span class="special">,</span> <span class="special">-</span><span class="number">1.0</span><span class="special">);</span> <span class="special">};</span>
</pre>
<p>
The tools are then as follows:
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">function_ratio_from_backwards_recurrence</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&</span> <span class="identifier">factor</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_iter</span><span class="special">);</span>
</pre>
<p>
Given a functor <code class="computeroutput"><span class="identifier">r</span></code> which encodes
the recurrence relation for function <code class="computeroutput"><span class="identifier">F</span></code>
at some location <span class="emphasis"><em>n</em></span>, then returns the ratio:
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../equations/three_term_recurrence_backwards_ratio.svg" width="63" height="20"></object></span>
</p>
<p>
This calculation is stable only if recurrence is stable in the backwards
direction. Further the ratio calculated is for the dominant solution (in
the backwards direction) of the recurrence relation, if there are multiple
solutions, then there is no guarantee that this will find the one you want
or expect.
</p>
<p>
Argument <span class="emphasis"><em>factor</em></span> is the tolerance required for convergence
of the continued fraction associated with the recurrence relation, and should
be no smaller than machine epsilon. Argument <span class="emphasis"><em>max_iter</em></span>
sets the maximum number of permitted iterations in the associated continued
fraction.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">function_ratio_from_forwards_recurrence</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="keyword">const</span> <span class="identifier">T</span><span class="special">&</span> <span class="identifier">factor</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">uintmax_t</span><span class="special">&</span> <span class="identifier">max_iter</span><span class="special">);</span>
</pre>
<p>
Given a functor <code class="computeroutput"><span class="identifier">r</span></code> which encodes
the recurrence relation for function F at some location <span class="emphasis"><em>n</em></span>,
then returns the ratio:
</p>
<p>
<span class="inlinemediaobject"><object type="image/svg+xml" data="../../../equations/three_term_recurrence_forwards_ratio.svg" width="63" height="20"></object></span>
</p>
<p>
This calculation is stable only if recurrence is stable in the forwards direction.
Further the ratio calculated is for the dominant solution (in the forwards
direction) of the recurrence relation, if there are multiple solutions, then
there is no guarantee that this will find the one you want or expect.
</p>
<p>
Argument <span class="emphasis"><em>factor</em></span> is the tolerance required for convergence
of the continued fraction associated with the recurrence relation, and should
be no smaller than machine epsilon. Argument <span class="emphasis"><em>max_iter</em></span>
sets the maximum number of permitted iterations in the associated continued
fraction.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">NextCoefs</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">apply_recurrence_relation_forward</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NextCoefs</span><span class="special">&</span> <span class="identifier">get_coefs</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">number_of_steps</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">second</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">long</span><span class="special">*</span> <span class="identifier">log_scaling</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">previous</span> <span class="special">=</span> <span class="number">0</span><span class="special">);</span>
</pre>
<p>
Applies a recurrence relation in a stable forward direction, starting with
the values F<sub>n-1</sub> and F<sub>n</sub>.
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term">get_coefs</span></dt>
<dd><p>
Functor that returns the coefficients of the recurrence relation. The
coefficients should be centered on position <span class="emphasis"><em>second</em></span>.
</p></dd>
<dt><span class="term">number_of_steps</span></dt>
<dd><p>
The number of steps to apply the recurrence relation onwards from
<span class="emphasis"><em>second</em></span>.
</p></dd>
<dt><span class="term">first</span></dt>
<dd><p>
The value of F<sub>n-1</sub>
</p></dd>
<dt><span class="term">second</span></dt>
<dd><p>
The value of F<sub>n</sub>
</p></dd>
<dt><span class="term">log_scaling</span></dt>
<dd><p>
When provided, the recurrence relations may be rescaled internally
to avoid over/underflow issues. The result should be multiplied by
<code class="computeroutput"><span class="identifier">exp</span><span class="special">(*</span><span class="identifier">log_scaling</span><span class="special">)</span></code>
to get the true value of the result.
</p></dd>
<dt><span class="term">previous</span></dt>
<dd><p>
When provided, is set to the value of F<sub>n + number_of_steps - 1</sub>
</p></dd>
</dl>
</div>
<p>
Returns F<sub>n + number_of_steps</sub>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">NextCoefs</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<span class="identifier">T</span> <span class="identifier">apply_recurrence_relation_backward</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">NextCoefs</span><span class="special">&</span> <span class="identifier">get_coefs</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">number_of_steps</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">T</span> <span class="identifier">second</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">long</span><span class="special">*</span> <span class="identifier">log_scaling</span> <span class="special">=</span> <span class="number">0</span><span class="special">,</span> <span class="identifier">T</span><span class="special">*</span> <span class="identifier">previous</span> <span class="special">=</span> <span class="number">0</span><span class="special">);</span>
</pre>
<p>
Applies a recurrence relation in a stable backward direction, starting with
the values F<sub>n+1</sub> and F<sub>n</sub>.
</p>
<div class="variablelist">
<p class="title"><b></b></p>
<dl class="variablelist">
<dt><span class="term">get_coefs</span></dt>
<dd><p>
Functor that returns the coefficients of the recurrence relation. The
coefficients should be centered on position <span class="emphasis"><em>second</em></span>.
</p></dd>
<dt><span class="term">number_of_steps</span></dt>
<dd><p>
The number of steps to apply the recurrence relation backwards from
<span class="emphasis"><em>second</em></span>.
</p></dd>
<dt><span class="term">first</span></dt>
<dd><p>
The value of F<sub>n+1</sub>
</p></dd>
<dt><span class="term">second</span></dt>
<dd><p>
The value of F<sub>n</sub>
</p></dd>
<dt><span class="term">log_scaling</span></dt>
<dd><p>
When provided, the recurrence relations may be rescaled internally
to avoid over/underflow issues. The result should be multiplied by
<code class="computeroutput"><span class="identifier">exp</span><span class="special">(*</span><span class="identifier">log_scaling</span><span class="special">)</span></code>
to get the true value of the result.
</p></dd>
<dt><span class="term">previous</span></dt>
<dd><p>
When provided, is set to the value of F<sub>n - number_of_steps + 1</sub>
</p></dd>
</dl>
</div>
<p>
Returns F<sub>n - number_of_steps</sub>.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">forward_recurrence_iterator</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special"><</span><span class="keyword">decltype</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">get</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">declval</span><span class="special"><</span><span class="identifier">Recurrence</span><span class="special">&>()(</span><span class="number">0</span><span class="special">)))>::</span><span class="identifier">type</span> <span class="identifier">value_type</span><span class="special">;</span>
<span class="identifier">forward_recurrence_iterator</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">value_type</span> <span class="identifier">f_n_minus_1</span><span class="special">,</span> <span class="identifier">value_type</span> <span class="identifier">f_n</span><span class="special">);</span>
<span class="identifier">forward_recurrence_iterator</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">value_type</span> <span class="identifier">f_n</span><span class="special">);</span>
<span class="comment">/* Operators omitted for clarity */</span>
<span class="special">};</span>
</pre>
<p>
Type <code class="computeroutput"><span class="identifier">forward_recurrence_iterator</span></code>
defines a forward-iterator for a recurrence relation stable in the forward
direction. The constructors take the recurrence relation, plus either one
or two values: if only one value is provided, then the second is computed
by using the recurrence relation to calculate the function ratio.
</p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">Recurrence</span><span class="special">></span>
<span class="keyword">struct</span> <span class="identifier">backward_recurrence_iterator</span>
<span class="special">{</span>
<span class="keyword">typedef</span> <span class="keyword">typename</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">remove_reference</span><span class="special"><</span><span class="keyword">decltype</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">get</span><span class="special"><</span><span class="number">0</span><span class="special">>(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">declval</span><span class="special"><</span><span class="identifier">Recurrence</span><span class="special">&>()(</span><span class="number">0</span><span class="special">)))>::</span><span class="identifier">type</span> <span class="identifier">value_type</span><span class="special">;</span>
<span class="identifier">backward_recurrence_iterator</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">value_type</span> <span class="identifier">f_n_plus_1</span><span class="special">,</span> <span class="identifier">value_type</span> <span class="identifier">f_n</span><span class="special">);</span>
<span class="identifier">backward_recurrence_iterator</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Recurrence</span><span class="special">&</span> <span class="identifier">r</span><span class="special">,</span> <span class="identifier">value_type</span> <span class="identifier">f_n</span><span class="special">);</span>
<span class="comment">/* Operators omitted for clarity */</span>
<span class="special">};</span>
</pre>
<p>
Type <code class="computeroutput"><span class="identifier">backward_recurrence_iterator</span></code>
defines a forward-iterator for a recurrence relation stable in the backward
direction. The constructors take the recurrence relation, plus either one
or two values: if only one value is provided, then the second is computed
by using the recurrence relation to calculate the function ratio.
</p>
<p>
Note that <span class="emphasis"><em>incrementing</em></span> this iterator moves the value
returned successively to F<sub>n-1</sub>, F<sub>n-2</sub> etc.
</p>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="engel_expansion.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../internals.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cohen_acceleration.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|