1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Lambert W function</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../special.html" title="Chapter 8. Special Functions">
<link rel="prev" href="jacobi_theta/jacobi_theta4.html" title="Jacobi Theta Function θ4">
<link rel="next" href="zetas.html" title="Zeta Functions">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="jacobi_theta/jacobi_theta4.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="zetas.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.lambert_w"></a><a class="link" href="lambert_w.html" title="Lambert W function">Lambert <span class="emphasis"><em>W</em></span>
function</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.lambert_w.h0"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.synopsis"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.synopsis">Synopsis</a>
</h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span> <span class="comment">// W0 branch, default policy.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span> <span class="comment">// W-1 branch, default policy.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span> <span class="comment">// W0 branch 1st derivative.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span> <span class="comment">// W-1 branch 1st derivative.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span> <span class="comment">// W0 with policy.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span> <span class="comment">// W-1 with policy.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span> <span class="comment">// W0 derivative with policy.</span>
<span class="keyword">template</span> <span class="special"><</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">></span>
<a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&);</span> <span class="comment">// W-1 derivative with policy.</span>
<span class="special">}</span> <span class="comment">// namespace boost</span>
<span class="special">}</span> <span class="comment">// namespace math</span>
</pre>
<h5>
<a name="math_toolkit.lambert_w.h1"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.description"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.description">Description</a>
</h5>
<p>
The <a href="http://en.wikipedia.org/wiki/Lambert_W_function" target="_top">Lambert W
function</a> is the solution of the equation <span class="emphasis"><em>W</em></span>(<span class="emphasis"><em>z</em></span>)<span class="emphasis"><em>e</em></span><sup><span class="emphasis"><em>W</em></span>(<span class="emphasis"><em>z</em></span>)</sup> =
<span class="emphasis"><em>z</em></span>. It is also called the Omega function, the inverse of
<span class="emphasis"><em>f</em></span>(<span class="emphasis"><em>W</em></span>) = <span class="emphasis"><em>We</em></span><sup><span class="emphasis"><em>W</em></span></sup>.
</p>
<p>
On the interval [0, ∞), there is just one real solution. On the interval (-<span class="emphasis"><em>e</em></span><sup>-1</sup>,
0), there are two real solutions, generating two branches which we will denote
by <span class="emphasis"><em>W</em></span><sub>0</sub> and <span class="emphasis"><em>W</em></span><sub>-1</sub>. In Boost.Math, we call
these principal branches <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
and <code class="computeroutput"><span class="identifier">lambert_wm1</span></code>; their derivatives
are labelled <code class="computeroutput"><span class="identifier">lambert_w0_prime</span></code>
and <code class="computeroutput"><span class="identifier">lambert_wm1_prime</span></code>.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_w_graph.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_w_graph_big_W.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_w0_prime_graph.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_prime_graph.svg" align="middle"></span>
</p></blockquote></div>
<p>
There is a singularity where the branches meet at <span class="emphasis"><em>e</em></span><sup>-1</sup> ≅ <code class="literal">-0.367879</code>.
Approaching this point, the condition number of function evaluation tends to
infinity, and the only method of recovering high accuracy is use of higher
precision.
</p>
<p>
This implementation computes the two real branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
<span class="emphasis"><em>W</em></span><sub>-1</sub>
with the functions <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
and <code class="computeroutput"><span class="identifier">lambert_wm1</span></code>, and their
derivatives, <code class="computeroutput"><span class="identifier">lambert_w0_prime</span></code>
and <code class="computeroutput"><span class="identifier">lambert_wm1_prime</span></code>. Complex
arguments are not supported.
</p>
<p>
The final <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
be used to control how the function deals with errors. Refer to <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policies</a>
for more details and see examples below.
</p>
<h6>
<a name="math_toolkit.lambert_w.h2"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.applications"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.applications">Applications
of the Lambert <span class="emphasis"><em>W</em></span> function</a>
</h6>
<p>
The Lambert <span class="emphasis"><em>W</em></span> function has a myriad of applications.
<a href="http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf" target="_top">Corless
et al.</a> provide a summary of applications, from the mathematical, like
iterated exponentiation and asymptotic roots of trinomials, to the real-world,
such as the range of a jet plane, enzyme kinetics, water movement in soil,
epidemics, and diode current (an example replicated <a href="../../../example/lambert_w_diode.cpp" target="_top">here</a>).
Since the publication of their landmark paper, there have been many more applications,
and also many new implementations of the function, upon which this implementation
builds.
</p>
<h5>
<a name="math_toolkit.lambert_w.h3"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.examples"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.examples">Examples</a>
</h5>
<p>
The most basic usage of the Lambert-<span class="emphasis"><em>W</em></span> function is demonstrated
below:
</p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span> <span class="comment">// For lambert_w function.</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w0</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_wm1</span><span class="special">;</span>
</pre>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="comment">// Show all potentially significant decimal digits,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// and show significant trailing zeros too.</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">10.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy for double.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(z) = "</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(z) = 1.7455280027406994</span>
</pre>
<p>
Other floating-point types can be used too, here <code class="computeroutput"><span class="keyword">float</span></code>,
including user-defined types like <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
It is convenient to use a function like <code class="computeroutput"><span class="identifier">show_value</span></code>
to display all (and only) potentially significant decimal digits, including
any significant trailing zeros, (<code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">max_digits10</span></code>) for the type <code class="computeroutput"><span class="identifier">T</span></code>.
</p>
<pre class="programlisting"><span class="keyword">float</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">10.F</span><span class="special">;</span>
<span class="keyword">float</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy digits10 = 7, digits2 = 24</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">") = "</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// lambert_w0(10.0000000) = 1.74552798</span>
</pre>
<p>
Example of an integer argument to <code class="computeroutput"><span class="identifier">lambert_w0</span></code>,
showing that an <code class="computeroutput"><span class="keyword">int</span></code> literal is
correctly promoted to a <code class="computeroutput"><span class="keyword">double</span></code>.
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span> <span class="comment">// Pass an int argument "10" that should be promoted to double argument.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(10) = "</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// lambert_w0(10) = 1.7455280027406994</span>
<span class="keyword">double</span> <span class="identifier">rp</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(10) = "</span> <span class="special"><<</span> <span class="identifier">rp</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(10) = 1.7455280027406994</span>
<span class="keyword">auto</span> <span class="identifier">rr</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span> <span class="comment">// C++11 needed.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(10) = "</span> <span class="special"><<</span> <span class="identifier">rr</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(10) = 1.7455280027406994 too, showing that rr has been promoted to double.</span>
</pre>
<p>
Using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
types to get much higher precision is painless.
</p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"10"</span><span class="special">);</span>
<span class="comment">// Note construction using a decimal digit string "10",</span>
<span class="comment">// NOT a floating-point double literal 10.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0("</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">") = "</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(10.000000000000000000000000000000000000000000000000000000000000000000000000000000) =</span>
<span class="comment">// 1.7455280027406993830743012648753899115352881290809413313533156980404446940000000</span>
</pre>
<div class="warning"><table border="0" summary="Warning">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
<th align="left">Warning</th>
</tr>
<tr><td align="left" valign="top"><p>
When using multiprecision, take very great care not to construct or assign
non-integers from <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">float</span></code> ... silently losing precision. Use
<code class="computeroutput"><span class="string">"1.2345678901234567890123456789"</span></code>
rather than <code class="computeroutput"><span class="number">1.2345678901234567890123456789</span></code>.
</p></td></tr>
</table></div>
<p>
Using multiprecision types, it is all too easy to get multiprecision precision
wrong!
</p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="number">0.7777777777777777777777777777777777777777777777777777777777777777777777777</span><span class="special">);</span>
<span class="comment">// Compiler evaluates the nearest double-precision binary representation,</span>
<span class="comment">// from the max_digits10 of the floating_point literal double 0.7777777777777777777777777777...,</span>
<span class="comment">// so any extra digits in the multiprecision type</span>
<span class="comment">// beyond max_digits10 (usually 17) are random and meaningless.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(0.77777777777777779011358916250173933804035186767578125000000000000000000000000000)</span>
<span class="comment">// = 0.48086152073210493501934682309060873341910109230469724725005039758139532631901386</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
See spurious non-seven decimal digits appearing after digit #17 in the argument
0.7777777777777777...!
</p></td></tr>
</table></div>
<p>
And similarly constructing from a literal <code class="computeroutput"><span class="keyword">double</span>
<span class="number">0.9</span></code>, with more random digits after digit
number 17.
</p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="number">0.9</span><span class="special">);</span> <span class="comment">// Construct from floating_point literal double 0.9.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">0.9</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(0.90000000000000002220446049250313080847263336181640625000000000000000000000000000)</span>
<span class="comment">// = 0.52983296563343440510607251781038939952850341796875000000000000000000000000000000</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(0.9) = "</span> <span class="special"><<</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="number">0.9</span><span class="special">))</span>
<span class="comment">// lambert_w0(0.9)</span>
<span class="comment">// = 0.52983296563343441</span>
<span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
Note how the <code class="computeroutput"><span class="identifier">cpp_float_dec_50</span></code>
result is only as correct as from a <code class="computeroutput"><span class="keyword">double</span>
<span class="special">=</span> <span class="number">0.9</span></code>.
</p>
<p>
Now see the correct result for all 50 decimal digits constructing from a decimal
digit string "0.9":
</p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"0.9"</span><span class="special">);</span> <span class="comment">// Construct from decimal digit string.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// 0.90000000000000000000000000000000000000000000000000000000000000000000000000000000)</span>
<span class="comment">// = 0.52983296563343441213336643954546304857788132269804249284012528304239956413801252</span>
</pre>
<p>
Note the expected zeros for all places up to 50 - and the correct Lambert
<span class="emphasis"><em>W</em></span> result!
</p>
<p>
(It is just as easy to compute even higher precisions, at least to thousands
of decimal digits, but not shown here for brevity. See <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
for comparison of an evaluation at 1000 decimal digit precision with <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>).
</p>
<p>
Policies can be used to control what action to take on errors:
</p>
<pre class="programlisting"><span class="comment">// Define an error handling policy:</span>
<span class="keyword">typedef</span> <span class="identifier">policy</span><span class="special"><</span>
<span class="identifier">domain_error</span><span class="special"><</span><span class="identifier">throw_on_error</span><span class="special">>,</span>
<span class="identifier">overflow_error</span><span class="special"><</span><span class="identifier">ignore_error</span><span class="special">></span> <span class="comment">// possibly unwise?</span>
<span class="special">></span> <span class="identifier">my_throw_policy</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="comment">// Show all potentially significant decimal digits,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// and show significant trailing zeros too.</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">+</span><span class="number">1</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Lambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Lambert W (1.0000000000000000) = 0.56714329040978384</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"\nLambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">", my_throw_policy()) = "</span>
<span class="special"><<</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">my_throw_policy</span><span class="special">())</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Lambert W (1.0000000000000000, my_throw_policy()) = 0.56714329040978384</span>
</pre>
<p>
An example error message:
</p>
<pre class="programlisting"><span class="identifier">Error</span> <span class="identifier">in</span> <span class="identifier">function</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_wm1</span><span class="special"><</span><span class="identifier">RealType</span><span class="special">>(<</span><span class="identifier">RealType</span><span class="special">>):</span>
<span class="identifier">Argument</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">1</span> <span class="identifier">is</span> <span class="identifier">out</span> <span class="identifier">of</span> <span class="identifier">range</span> <span class="special">(</span><span class="identifier">z</span> <span class="special"><=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">for</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="identifier">branch</span><span class="special">!</span> <span class="special">(</span><span class="identifier">Try</span> <span class="identifier">Lambert</span> <span class="identifier">W0</span> <span class="identifier">branch</span><span class="special">?)</span>
</pre>
<p>
Showing an error reported if a value is passed to <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
that is out of range, (and was probably meant to be passed to <code class="computeroutput"><span class="identifier">lambert_wm1</span></code> instead).
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">+</span><span class="number">1.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_wm1(+1.) = "</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
The full source of these examples is at <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
</p>
<h6>
<a name="math_toolkit.lambert_w.h4"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.diode_resistance"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.diode_resistance">Diode
Resistance Example</a>
</h6>
<p>
A typical example of a practical application is estimating the current flow
through a diode with series resistance from a paper by Banwell and Jayakumar.
</p>
<p>
Having the Lambert <span class="emphasis"><em>W</em></span> function available makes it simple
to reproduce the plot in their paper (Fig 2) comparing estimates using with
Lambert <span class="emphasis"><em>W</em></span> function and some actual measurements. The colored
curves show the effect of various series resistance on the current compared
to an extrapolated line in grey with no internal (or external) resistance.
</p>
<p>
Two formulae relating the diode current and effect of series resistance can
be combined, but yield an otherwise intractable equation relating the current
versus voltage with a varying series resistance. This was reformulated as a
generalized equation in terms of the Lambert W function:
</p>
<p>
Banwell and Jakaumar equation 5
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="serif_italic">I(V) = μ V<sub>T</sub>/ R <sub>S</sub> ․ W<sub>0</sub>(I<sub>0</sub> R<sub>S</sub> / (μ V<sub>T</sub>))</span>
</p></blockquote></div>
<p>
Using these variables
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">nu</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span> <span class="comment">// Assumed ideal.</span>
<span class="keyword">double</span> <span class="identifier">vt</span> <span class="special">=</span> <span class="identifier">v_thermal</span><span class="special">(</span><span class="number">25</span><span class="special">);</span> <span class="comment">// v thermal, Shockley equation, expect about 25 mV at room temperature.</span>
<span class="keyword">double</span> <span class="identifier">boltzmann_k</span> <span class="special">=</span> <span class="number">1.38e-23</span><span class="special">;</span> <span class="comment">// joules/kelvin</span>
<span class="keyword">double</span> <span class="identifier">temp</span> <span class="special">=</span> <span class="number">273</span> <span class="special">+</span> <span class="number">25</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">charge_q</span> <span class="special">=</span> <span class="number">1.6e-19</span><span class="special">;</span> <span class="comment">// column</span>
<span class="identifier">vt</span> <span class="special">=</span> <span class="identifier">boltzmann_k</span> <span class="special">*</span> <span class="identifier">temp</span> <span class="special">/</span> <span class="identifier">charge_q</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"V thermal "</span> <span class="special"><<</span> <span class="identifier">vt</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// V thermal 0.0257025 = 25 mV</span>
<span class="keyword">double</span> <span class="identifier">rsat</span> <span class="special">=</span> <span class="number">0.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">isat</span> <span class="special">=</span> <span class="number">25.e-15</span><span class="special">;</span> <span class="comment">// 25 fA;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Isat = "</span> <span class="special"><<</span> <span class="identifier">isat</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">re</span> <span class="special">=</span> <span class="number">0.3</span><span class="special">;</span> <span class="comment">// Estimated from slope of straight section of graph (equation 6).</span>
<span class="keyword">double</span> <span class="identifier">v</span> <span class="special">=</span> <span class="number">0.9</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">icalc</span> <span class="special">=</span> <span class="identifier">iv</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">vt</span><span class="special">,</span> <span class="number">249.</span><span class="special">,</span> <span class="identifier">re</span><span class="special">,</span> <span class="identifier">isat</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"voltage = "</span> <span class="special"><<</span> <span class="identifier">v</span> <span class="special"><<</span> <span class="string">", current = "</span> <span class="special"><<</span> <span class="identifier">icalc</span> <span class="special"><<</span> <span class="string">", "</span> <span class="special"><<</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">icalc</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// voltage = 0.9, current = 0.00108485, -6.82631</span>
</pre>
<p>
the formulas can be rendered in C++
</p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">iv</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">v</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">vt</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">rsat</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">re</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">isat</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span> <span class="special">=</span> <span class="number">1.</span><span class="special">)</span>
<span class="special">{</span>
<span class="comment">// V thermal 0.0257025 = 25 mV</span>
<span class="comment">// was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.</span>
<span class="identifier">rsat</span> <span class="special">=</span> <span class="identifier">rsat</span> <span class="special">+</span> <span class="identifier">re</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">i</span> <span class="special">=</span> <span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span> <span class="special">/</span> <span class="identifier">rsat</span><span class="special">;</span>
<span class="comment">// std::cout << "nu * vt / rsat = " << i << std::endl; // 0.000103223</span>
<span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="identifier">isat</span> <span class="special">*</span> <span class="identifier">rsat</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span><span class="special">);</span>
<span class="comment">// std::cout << "isat * rsat / (nu * vt) = " << x << std::endl;</span>
<span class="keyword">double</span> <span class="identifier">eterm</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">v</span> <span class="special">+</span> <span class="identifier">isat</span> <span class="special">*</span> <span class="identifier">rsat</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span><span class="special">);</span>
<span class="comment">// std::cout << "(v + isat * rsat) / (nu * vt) = " << eterm << std::endl;</span>
<span class="keyword">double</span> <span class="identifier">e</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">eterm</span><span class="special">);</span>
<span class="comment">// std::cout << "exp(eterm) = " << e << std::endl;</span>
<span class="keyword">double</span> <span class="identifier">w0</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">x</span> <span class="special">*</span> <span class="identifier">e</span><span class="special">);</span>
<span class="comment">// std::cout << "w0 = " << w0 << std::endl;</span>
<span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="identifier">w0</span> <span class="special">-</span> <span class="identifier">isat</span><span class="special">;</span>
<span class="special">}</span> <span class="comment">// double iv</span>
</pre>
<p>
to reproduce their Fig 2:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/diode_iv_plot.svg" align="middle"></span>
</p></blockquote></div>
<p>
The plotted points for no external series resistance (derived from their published
plot as the raw data are not publicly available) are used to extrapolate back
to estimate the intrinsic emitter resistance as 0.3 ohm. The effect of external
series resistance is visible when the colored lines start to curve away from
the straight line as voltage increases.
</p>
<p>
See <a href="../../../example/lambert_w_diode.cpp" target="_top">lambert_w_diode.cpp</a>
and <a href="../../../example/lambert_w_diode_graph.cpp" target="_top">lambert_w_diode_graph.cpp</a>
for details of the calculation.
</p>
<h6>
<a name="math_toolkit.lambert_w.h5"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.implementations"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementations">Existing
implementations</a>
</h6>
<p>
The principal value of the Lambert <span class="emphasis"><em>W</em></span> function is implemented
in the <a href="http://mathworld.wolfram.com/LambertW-Function.html" target="_top">Wolfram
Language</a> as <code class="computeroutput"><span class="identifier">ProductLog</span><span class="special">[</span><span class="identifier">k</span><span class="special">,</span>
<span class="identifier">z</span><span class="special">]</span></code>,
where <code class="computeroutput"><span class="identifier">k</span></code> is the branch.
</p>
<p>
The symbolic algebra program <a href="https://www.maplesoft.com" target="_top">Maple</a>
also computes Lambert <span class="emphasis"><em>W</em></span> to an arbitrary precision.
</p>
<h5>
<a name="math_toolkit.lambert_w.h6"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.precision"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.precision">Controlling
the compromise between Precision and Speed</a>
</h5>
<h6>
<a name="math_toolkit.lambert_w.h7"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.small_floats"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.small_floats">Floating-point
types <code class="computeroutput"><span class="keyword">double</span></code> and <code class="computeroutput"><span class="keyword">float</span></code></a>
</h6>
<p>
This implementation provides good precision and excellent speed for __fundamental
<code class="computeroutput"><span class="keyword">float</span></code> and <code class="computeroutput"><span class="keyword">double</span></code>.
</p>
<p>
All the functions usually return values within a few <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
in the last place (ULP)</a> for the floating-point type, except for very
small arguments very near zero, and for arguments very close to the singularity
at the branch point.
</p>
<p>
By default, this implementation provides the best possible speed. Very slightly
average higher precision and less bias might be obtained by adding a <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a> step refinement, but
at the cost of more than doubling the runtime.
</p>
<h6>
<a name="math_toolkit.lambert_w.h8"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.big_floats"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.big_floats">Floating-point
types larger than double</a>
</h6>
<p>
For floating-point types with precision greater than <code class="computeroutput"><span class="keyword">double</span></code>
and <code class="computeroutput"><span class="keyword">float</span></code> <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
(built-in) types</a>, a <code class="computeroutput"><span class="keyword">double</span></code>
evaluation is used as a first approximation followed by Halley refinement,
using a single step where it can be predicted that this will be sufficient,
and only using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
iteration when necessary. Higher precision types are always going to be <span class="bold"><strong>very, very much slower</strong></span>.
</p>
<p>
The 'best' evaluation (the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>)
can be achieved by <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
from a higher precision type, typically a <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>,
but at the cost of increasing run-time 100-fold; this has been used here to
provide some of our reference values for testing.
</p>
<p>
For example, we get a reference value using a high precision type, for example;
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span>
</pre>
<p>
that uses Halley iteration to refine until it is as precise as possible for
this <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code> type.
</p>
<p>
As a further check we can compare this with a <a href="http://www.wolframalpha.com/" target="_top">Wolfram
Alpha</a> computation using command <code class="literal">N[ProductLog[10.], 50]</code>
to get 50 decimal digits and similarly <code class="literal">N[ProductLog[10.], 17]</code>
to get the nearest representable for 64-bit <code class="computeroutput"><span class="keyword">double</span></code>
precision.
</p>
<pre class="programlisting"> <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">float_distance</span><span class="special">;</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"10."</span><span class="special">);</span> <span class="comment">// Note use a decimal digit string, not a double 10.</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">cpp_bin_float_50</span><span class="special">>::</span><span class="identifier">digits10</span><span class="special">);</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(z) cpp_bin_float_50 = "</span> <span class="special"><<</span> <span class="identifier">r</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">//lambert_w0(z) cpp_bin_float_50 = 1.7455280027406993830743012648753899115352881290809</span>
<span class="comment">// [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"lambert_w0(z) static_cast from cpp_bin_float_50 = "</span>
<span class="special"><<</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="identifier">r</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// double lambert_w0(z) static_cast from cpp_bin_float_50 = 1.7455280027406994</span>
<span class="comment">// [N[productlog[10], 17]] == 1.7455280027406994</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"bits different from Wolfram = "</span>
<span class="special"><<</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="identifier">r</span><span class="special">),</span> <span class="number">1.7455280027406994</span><span class="special">))</span>
<span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0</span>
</pre>
<p>
giving us the same nearest representable using 64-bit <code class="computeroutput"><span class="keyword">double</span></code>
as <code class="computeroutput"><span class="number">1.7455280027406994</span></code>.
</p>
<p>
However, the rational polynomial and Fukushima Schroder approximations are
so good for type <code class="computeroutput"><span class="keyword">float</span></code> and <code class="computeroutput"><span class="keyword">double</span></code> that negligible improvement is gained
from a <code class="computeroutput"><span class="keyword">double</span></code> Halley step.
</p>
<p>
This is shown with <a href="../../../example/lambert_w_precision_example.cpp" target="_top">lambert_w_precision_example.cpp</a>
for Lambert <span class="emphasis"><em>W</em></span><sub>0</sub>:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w_detail</span><span class="special">::</span><span class="identifier">lambert_w_halley_step</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">epsilon_difference</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">relative_difference</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// and show any significant trailing zeros too.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z50</span><span class="special">(</span><span class="string">"1.23"</span><span class="special">);</span> <span class="comment">// Note: use a decimal digit string, not a double 1.23!</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">w50</span><span class="special">;</span>
<span class="identifier">w50</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">cpp_bin_float_50</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 50 decimal digits.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Reference Lambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") =\n "</span>
<span class="special"><<</span> <span class="identifier">w50</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
<span class="keyword">double</span> <span class="identifier">wr</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="identifier">w50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Reference Lambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">wr</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">w</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Rat/poly Lambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Add a Halley step to the value obtained from rational polynomial approximation.</span>
<span class="keyword">double</span> <span class="identifier">ww</span> <span class="special">=</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Halley Step Lambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"absolute difference from Halley step = "</span> <span class="special"><<</span> <span class="identifier">w</span> <span class="special">-</span> <span class="identifier">ww</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"relative difference from Halley step = "</span> <span class="special"><<</span> <span class="identifier">relative_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"epsilon difference from Halley step = "</span> <span class="special"><<</span> <span class="identifier">epsilon_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"epsilon for float = "</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"bits different from Halley step = "</span> <span class="special"><<</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
with this output:
</p>
<pre class="programlisting"><span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2299999999999999822364316059974953532218933105468750</span><span class="special">)</span> <span class="special">=</span>
<span class="number">0.64520356959320237759035605255334853830173300262666480</span>
<span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span> <span class="number">0.64520356959320235</span>
<span class="identifier">Rat</span><span class="special">/</span><span class="identifier">poly</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span> <span class="number">0.64520356959320224</span>
<span class="identifier">Halley</span> <span class="identifier">Step</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span> <span class="number">0.64520356959320235</span>
<span class="identifier">absolute</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="special">-</span><span class="number">1.1102230246251565e-16</span>
<span class="identifier">relative</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.7207329236029286e-16</span>
<span class="identifier">epsilon</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">0.77494921535422934</span>
<span class="identifier">epsilon</span> <span class="keyword">for</span> <span class="keyword">float</span> <span class="special">=</span> <span class="number">2.2204460492503131e-16</span>
<span class="identifier">bits</span> <span class="identifier">different</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1</span>
</pre>
<p>
and then for <span class="emphasis"><em>W</em></span><sub>-1</sub>:
</p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w_detail</span><span class="special">::</span><span class="identifier">lambert_w_halley_step</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">epsilon_difference</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">relative_difference</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// and show any significant trailing zeros too.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z50</span><span class="special">(</span><span class="string">"-0.123"</span><span class="special">);</span> <span class="comment">// Note: use a decimal digit string, not a double -1.234!</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">wm1_50</span><span class="special">;</span>
<span class="identifier">wm1_50</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">cpp_bin_float_50</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 50 decimal digits.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Reference Lambert W-1 ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") =\n "</span>
<span class="special"><<</span> <span class="identifier">wm1_50</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
<span class="keyword">double</span> <span class="identifier">wr</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">>(</span><span class="identifier">wm1_50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Reference Lambert W-1 ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">wr</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">w</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Rat/poly Lambert W-1 ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Add a Halley step to the value obtained from rational polynomial approximation.</span>
<span class="keyword">double</span> <span class="identifier">ww</span> <span class="special">=</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"Halley Step Lambert W ("</span> <span class="special"><<</span> <span class="identifier">z</span> <span class="special"><<</span> <span class="string">") = "</span> <span class="special"><<</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"absolute difference from Halley step = "</span> <span class="special"><<</span> <span class="identifier">w</span> <span class="special">-</span> <span class="identifier">ww</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"relative difference from Halley step = "</span> <span class="special"><<</span> <span class="identifier">relative_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"epsilon difference from Halley step = "</span> <span class="special"><<</span> <span class="identifier">epsilon_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"epsilon for float = "</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">epsilon</span><span class="special">()</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special"><<</span> <span class="string">"bits different from Halley step = "</span> <span class="special"><<</span> <span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">int</span><span class="special">>(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">))</span> <span class="special"><<</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
with this output:
</p>
<pre class="programlisting"><span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12299999999999999822364316059974953532218933105468750</span><span class="special">)</span> <span class="special">=</span>
<span class="special">-</span><span class="number">3.2849102557740360179084675531714935199110302996513384</span>
<span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">3.2849102557740362</span>
<span class="identifier">Rat</span><span class="special">/</span><span class="identifier">poly</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">3.2849102557740357</span>
<span class="identifier">Halley</span> <span class="identifier">Step</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">3.2849102557740362</span>
<span class="identifier">absolute</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">4.4408920985006262e-16</span>
<span class="identifier">relative</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.3519066740696092e-16</span>
<span class="identifier">epsilon</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">0.60884463935795785</span>
<span class="identifier">epsilon</span> <span class="keyword">for</span> <span class="keyword">float</span> <span class="special">=</span> <span class="number">2.2204460492503131e-16</span>
<span class="identifier">bits</span> <span class="identifier">different</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="special">-</span><span class="number">1</span>
</pre>
<h6>
<a name="math_toolkit.lambert_w.h9"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.differences_distribution"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.differences_distribution">Distribution
of differences from 'best' <code class="computeroutput"><span class="keyword">double</span></code>
evaluations</a>
</h6>
<p>
The distribution of differences from 'best' are shown in these graphs comparing
<code class="computeroutput"><span class="keyword">double</span></code> precision evaluations with
reference 'best' z50 evaluations using <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
type reduced to <code class="computeroutput"><span class="keyword">double</span></code> with <code class="computeroutput"><span class="keyword">static_cast</span><span class="special"><</span><span class="keyword">double</span><span class="special">(</span><span class="identifier">z50</span><span class="special">)</span></code> :
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_w0_errors_graph.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_errors_graph.svg" align="middle"></span>
</p></blockquote></div>
<p>
As noted in the implementation section, the distribution of these differences
is somewhat biased for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> and this might be reduced
using a <code class="computeroutput"><span class="keyword">double</span></code> Halley step at
small runtime cost. But if you are seriously concerned to get really precise
computations, the only way is using a higher precision type and then reduce
to the desired type. Fortunately, <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
makes this very easy to program, if much slower.
</p>
<h5>
<a name="math_toolkit.lambert_w.h10"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.edge_cases"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.edge_cases">Edge
and Corner cases</a>
</h5>
<h6>
<a name="math_toolkit.lambert_w.h11"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.w0_edges"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.w0_edges">The
<span class="emphasis"><em>W</em></span><sub>0</sub> Branch</a>
</h6>
<p>
The domain of <span class="emphasis"><em>W</em></span><sub>0</sub> is [-<span class="emphasis"><em>e</em></span><sup>-1</sup>, ∞). Numerically,
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span><span class="special">)</span></code> is exactly -1.
</li>
<li class="listitem">
<code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span></code> for
<code class="computeroutput"><span class="identifier">z</span> <span class="special"><</span>
<span class="special">-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span></code> throws
a <code class="computeroutput"><span class="identifier">domain_error</span></code>, or returns
<code class="computeroutput"><span class="identifier">NaN</span></code> according to the policy.
</li>
<li class="listitem">
<code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">infinity</span><span class="special">())</span></code>
throws an <code class="computeroutput"><span class="identifier">overflow_error</span></code>.
</li>
</ul></div>
<p>
(An infinite argument probably indicates that something has already gone wrong,
but if it is desired to return infinity, this case should be handled before
calling <code class="computeroutput"><span class="identifier">lambert_w0</span></code>).
</p>
<h6>
<a name="math_toolkit.lambert_w.h12"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.wm1_edges"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_edges"><span class="emphasis"><em>W</em></span><sub>-1</sub> Branch</a>
</h6>
<p>
The domain of <span class="emphasis"><em>W</em></span><sub>-1</sub> is [-<span class="emphasis"><em>e</em></span><sup>-1</sup>, 0). Numerically,
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
<code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span><span class="special">)</span></code> is exactly -1.
</li>
<li class="listitem">
<code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="number">0</span><span class="special">)</span></code> returns
-∞ (or the nearest equivalent if <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">has_infinity</span>
<span class="special">==</span> <span class="keyword">false</span></code>).
</li>
<li class="listitem">
<code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">min</span><span class="special">())</span></code>
returns the maximum (most negative) possible value of Lambert <span class="emphasis"><em>W</em></span>
for the type T. <br> For example, for <code class="computeroutput"><span class="keyword">double</span></code>:
lambert_wm1(-2.2250738585072014e-308) = -714.96865723796634 <br> and
for <code class="computeroutput"><span class="keyword">float</span></code>: lambert_wm1(-1.17549435e-38)
= -91.8567734 <br>
</li>
<li class="listitem">
<p class="simpara">
<code class="computeroutput"><span class="identifier">z</span> <span class="special"><</span>
<span class="special">-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">min</span><span class="special">()</span></code>, means that z is zero or denormalized
(if <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">detail</span><span class="special">::</span><span class="identifier">has_denorm_now</span><span class="special"><</span><span class="identifier">T</span><span class="special">>()</span> <span class="special">==</span> <span class="keyword">true</span></code>),
for example: <code class="computeroutput"><span class="identifier">r</span> <span class="special">=</span>
<span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="keyword">double</span><span class="special">>::</span><span class="identifier">denorm_min</span><span class="special">());</span></code>
and an overflow_error exception is thrown, and will give a message like:
</p>
<p class="simpara">
Error in function boost::math::lambert_wm1<RealType>(<RealType>):
Argument z = -4.9406564584124654e-324 is too small (z < -std::numeric_limits<T>::min
so denormalized) for Lambert W-1 branch!
</p>
</li>
</ul></div>
<p>
Denormalized values are not supported for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> (because
not all floating-point types denormalize), and anyway it only covers a tiny
fraction of the range of possible z arguments values.
</p>
<h5>
<a name="math_toolkit.lambert_w.h13"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.compilers"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.compilers">Compilers</a>
</h5>
<p>
The <code class="computeroutput"><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span></code> code has been shown to work on most C++98
compilers. (Apart from requiring C++11 extensions for using of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><>::</span><span class="identifier">max_digits10</span></code>
in some diagnostics. Many old pre-c++11 compilers provide this extension but
may require enabling to use, for example using b2/bjam the lambert_w examples
use this command:
</p>
<pre class="programlisting"><span class="special">[</span> <span class="identifier">run</span> <span class="identifier">lambert_w_basic_example</span><span class="special">.</span><span class="identifier">cpp</span> <span class="special">:</span> <span class="special">:</span> <span class="special">:</span> <span class="special">[</span> <span class="identifier">requires</span> <span class="identifier">cxx11_numeric_limits</span> <span class="special">]</span> <span class="special">]</span>
</pre>
<p>
See <a href="../../../example/Jamfile.v2" target="_top">jamfile.v2</a>.)
</p>
<p>
For details of which compilers are expected to work see lambert_w tests and
examples in:<br> <a href="https://www.boost.org/development/tests/master/developer/math.html" target="_top">Boost
Test Summary report for master branch (used for latest release)</a><br>
<a href="https://www.boost.org/development/tests/develop/developer/math.html" target="_top">Boost
Test Summary report for latest developer branch</a>.
</p>
<p>
As expected, debug mode is very much slower than release.
</p>
<h6>
<a name="math_toolkit.lambert_w.h14"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.diagnostics"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.diagnostics">Diagnostics
Macros</a>
</h6>
<p>
Several macros are provided to output diagnostic information (potentially
<span class="bold"><strong>much</strong></span> output). These can be statements, for
example:
</p>
<p>
<code class="computeroutput"><span class="preprocessor">#define</span> <span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>
</p>
<p>
placed <span class="bold"><strong>before</strong></span> the <code class="computeroutput"><span class="identifier">lambert_w</span></code>
include statement
</p>
<p>
<code class="computeroutput"><span class="preprocessor">#include</span> <span class="special"><</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">></span></code>,
</p>
<p>
or defined on the project compile command-line: <code class="computeroutput"><span class="special">/</span><span class="identifier">DBOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>,
</p>
<p>
or defined in a jamfile.v2: <code class="computeroutput"><span class="special"><</span><span class="identifier">define</span><span class="special">></span><span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>
</p>
<pre class="programlisting"><span class="comment">// #define-able macros</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_HALLEY</span> <span class="comment">// Halley refinement diagnostics.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_PRECISION</span> <span class="comment">// Precision.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1</span> <span class="comment">// W1 branch diagnostics.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_HALLEY</span> <span class="comment">// Halley refinement diagnostics only for W-1 branch.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_TINY</span> <span class="comment">// K > 64, z > -1.0264389699511303e-26</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_LOOKUP</span> <span class="comment">// Show results from W-1 lookup table.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER</span> <span class="comment">// Schroeder refinement diagnostics.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span> <span class="comment">// Number of terms used for near-singularity series.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SINGULARITY_SERIES</span> <span class="comment">// Show evaluation of series near branch singularity.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES_ITERATIONS</span> <span class="comment">// Show evaluation of series for small z.</span>
</pre>
<h5>
<a name="math_toolkit.lambert_w.h15"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementation">Implementation</a>
</h5>
<p>
There are many previous implementations, each with increasing accuracy and/or
speed. See <a class="link" href="lambert_w.html#math_toolkit.lambert_w.references">references</a>
below.
</p>
<p>
For most of the range of <span class="emphasis"><em>z</em></span> arguments, some initial approximation
followed by a single refinement, often using Halley or similar method, gives
a useful precision. For speed, several implementations avoid evaluation of
a iteration test using the exponential function, estimating that a single refinement
step will suffice, but these rarely get to the best result possible. To get
a better precision, additional refinements, probably iterative, are needed
for example, using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
or <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.schroder">Schröder</a> methods.
</p>
<p>
For C++, the most precise results possible, closest to the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
for the C++ type being used, it is usually necessary to use a higher precision
type for intermediate computation, finally static-casting back to the smaller
desired result type. This strategy is used by <a href="https://www.maplesoft.com" target="_top">Maple</a>
and <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, for example,
using arbitrary precision arithmetic, and some of their high-precision values
are used for testing this library. This method is also used to provide some
<a href="https://www.boost.org/doc/libs/release/libs/test/doc/html/index.html" target="_top">Boost.Test</a>
values using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
typically, a 50 decimal digit type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
<code class="computeroutput"><span class="keyword">static_cast</span></code> to a <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>
or <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
type.
</p>
<p>
For <span class="emphasis"><em>z</em></span> argument values near the singularity and near zero,
other approximations may be used, possibly followed by refinement or increasing
number of series terms until a desired precision is achieved. At extreme arguments
near to zero or the singularity at the branch point, even this fails and the
only method to achieve a really close result is to cast from a higher precision
type.
</p>
<p>
In practical applications, the increased computation required (often towards
a thousand-fold slower and requiring much additional code for <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>)
is not justified and the algorithms here do not implement this. But because
the Boost.Lambert_W algorithms has been tested using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
users who require this can always easily achieve the nearest representation
for <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
(built-in) types</a> - if the application justifies the very large extra
computation cost.
</p>
<h6>
<a name="math_toolkit.lambert_w.h16"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.evolution_of_this_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.evolution_of_this_implementation">Evolution
of this implementation</a>
</h6>
<p>
One compact real-only implementation was based on an algorithm by <a href="http://discovery.ucl.ac.uk/1482128/1/Luu_thesis.pdf" target="_top">Thomas
Luu, Thesis, University College London (2015)</a>, (see routine 11 on page
98 for his Lambert W algorithm) and his Halley refinement is used iteratively
when required. A first implementation was based on Thomas Luu's code posted
at <a href="https://svn.boost.org/trac/boost/ticket/11027" target="_top">Boost Trac #11027</a>.
It has been implemented from Luu's algorithm but templated on <code class="computeroutput"><span class="identifier">RealType</span></code> parameter and result and handles
both <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
(built-in) types</a> (<code class="computeroutput"><span class="keyword">float</span><span class="special">,</span> <span class="keyword">double</span><span class="special">,</span>
<span class="keyword">long</span> <span class="keyword">double</span></code>),
<a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
and also has been tested successfully with a proposed fixed_point type.
</p>
<p>
A first approximation was computed using the method of Barry et al (see references
5 & 6 below). This was extended to the widely used <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms443/toms443.html" target="_top">TOMS443</a>
FORTRAN and C++ versions by John Burkardt using Schroeder refinement(s). (For
users only requiring an accuracy of relative accuracy of 0.02%, Barry's function
alone might suffice, but a better <a href="https://en.wikipedia.org/wiki/Rational_function" target="_top">rational
function</a> approximation method has since been developed for this implementation).
</p>
<p>
We also considered using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.newton">Newton-Raphson
iteration</a> method.
</p>
<pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="identifier">w</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">w</span> <span class="identifier">e</span><span class="special">^</span><span class="identifier">w</span> <span class="special">-</span><span class="identifier">z</span> <span class="special">=</span> <span class="number">0</span> <span class="comment">// Luu equation 6.37</span>
<span class="identifier">f</span><span class="char">'(w) = e^w (1 + w), Wolfram alpha (d)/(dw)(f(w) = w exp(w) - z) = e^w (w + 1)
if (f(w) / f'</span><span class="special">(</span><span class="identifier">w</span><span class="special">)</span> <span class="special">-</span><span class="number">1</span> <span class="special"><</span> <span class="identifier">tolerance</span>
<span class="identifier">w1</span> <span class="special">=</span> <span class="identifier">w0</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">expw0</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">w0</span> <span class="special">+</span> <span class="number">1</span><span class="special">));</span> <span class="comment">// Refine new Newton/Raphson estimate.</span>
</pre>
<p>
but concluded that since the Newton-Raphson method takes typically 6 iterations
to converge within tolerance, whereas Halley usually takes only 1 to 3 iterations
to achieve an result within 1 <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
in the last place (ULP)</a>, so the Newton-Raphson method is unlikely to
be quicker than the additional cost of computing the 2nd derivative for Halley's
method.
</p>
<p>
Halley refinement uses the simplified formulae obtained from <a href="http://www.wolframalpha.com/input/?i=%5B2(z+exp(z)-w)+d%2Fdx+(z+exp(z)-w)%5D+%2F+%5B2+(d%2Fdx+(z+exp(z)-w))%5E2+-+(z+exp(z)-w)+d%5E2%2Fdx%5E2+(z+exp(z)-w)%5D" target="_top">Wolfram
Alpha</a>
</p>
<pre class="programlisting"><span class="special">[</span><span class="number">2</span><span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)</span> <span class="identifier">d</span><span class="special">/</span><span class="identifier">dx</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)]</span> <span class="special">/</span> <span class="special">[</span><span class="number">2</span> <span class="special">(</span><span class="identifier">d</span><span class="special">/</span><span class="identifier">dx</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">))^</span><span class="number">2</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)</span> <span class="identifier">d</span><span class="special">^</span><span class="number">2</span><span class="special">/</span><span class="identifier">dx</span><span class="special">^</span><span class="number">2</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)]</span>
</pre>
<h5>
<a name="math_toolkit.lambert_w.h17"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.compact_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.compact_implementation">Implementing
Compact Algorithms</a>
</h5>
<p>
The most compact algorithm can probably be implemented using the log approximation
of Corless et al. followed by Halley iteration (but is also slowest and least
precise near zero and near the branch singularity).
</p>
<h5>
<a name="math_toolkit.lambert_w.h18"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.faster_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.faster_implementation">Implementing
Faster Algorithms</a>
</h5>
<p>
More recently, the Tosio Fukushima has developed an even faster algorithm,
avoiding any transcendental function calls as these are necessarily expensive.
The current implementation of Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> is based on his
algorithm starting with a translation from Fukushima's FORTRAN into C++ by
Darko Veberic.
</p>
<p>
Many applications of the Lambert W function make many repeated evaluations
for Monte Carlo methods; for these applications speed is very important. Luu,
and Chapeau-Blondeau and Monir provide typical usage examples.
</p>
<p>
Fukushima improves the important observation that much of the execution time
of all previous iterative algorithms was spent evaluating transcendental functions,
usually <code class="computeroutput"><span class="identifier">exp</span></code>. He has put a lot
of work into avoiding any slow transcendental functions by using lookup tables
and bisection, finishing with a single Schroeder refinement, without any check
on the final precision of the result (necessarily evaluating an expensive exponential).
</p>
<p>
Theoretical and practical tests confirm that Fukushima's algorithm gives Lambert
W estimates with a known small error bound (several <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
in the last place (ULP)</a>) over nearly all the range of <span class="emphasis"><em>z</em></span>
argument.
</p>
<p>
A mean difference was computed to express the typical error and is often about
0.5 epsilon, the theoretical minimum. Using the <a href="../../../../../libs/math/doc/html/math_toolkit/next_float/float_distance.html" target="_top">Boost.Math
float_distance</a>, we can also express this as the number of bits that
are different from the nearest representable or 'exact' or 'best' value. The
number and distribution of these few bits differences was studied by binning,
including their sign. Bins for (signed) 0, 1, 2 and 3 and 4 bits proved suitable.
</p>
<p>
However, though these give results within a few <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
epsilon</a> of the nearest representable result, they do not get as close
as is very often possible with further refinement, nearly always to within
one or two <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
epsilon</a>.
</p>
<p>
More significantly, the evaluations of the sum of all signed differences using
the Fukshima algorithm show a slight bias, being more likely to be a bit or
few below the nearest representation than above; bias might have unwanted effects
on some statistical computations.
</p>
<p>
Fukushima's method also does not cover the full range of z arguments of 'float'
precision and above.
</p>
<p>
For this implementation of Lambert <span class="emphasis"><em>W</em></span><sub>0</sub>, John Maddock used
the Boost.Math <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
algorithm</a> method program to devise a <a href="https://en.wikipedia.org/wiki/Rational_function" target="_top">rational
function</a> for several ranges of argument for the <span class="emphasis"><em>W</em></span><sub>0</sub> branch
of Lambert <span class="emphasis"><em>W</em></span> function. These minimax rational approximations
are combined for an algorithm that is both smaller and faster.
</p>
<p>
Sadly it has not proved practical to use the same <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
algorithm</a> method for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch and so
the Fukushima algorithm is retained for this branch.
</p>
<p>
An advantage of both minimax rational <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
algorithm</a> approximations is that the <span class="bold"><strong>distribution</strong></span>
from the reference values is reasonably random and insignificantly biased.
</p>
<p>
For example, table below a test of Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> 10000 values
of argument covering the main range of possible values, 10000 comparisons from
z = 0.0501 to 703, in 0.001 step factor 1.05 when module 7 == 0
</p>
<div class="table">
<a name="math_toolkit.lambert_w.lambert_w0_Fukushima"></a><p class="title"><b>Table 8.73. Fukushima Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> and typical improvement from
a single Halley step.</b></p>
<div class="table-contents"><table class="table" summary="Fukushima Lambert W0 and typical improvement from
a single Halley step.">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Method
</p>
</th>
<th>
<p>
Exact
</p>
</th>
<th>
<p>
One_bit
</p>
</th>
<th>
<p>
Two_bits
</p>
</th>
<th>
<p>
Few_bits
</p>
</th>
<th>
<p>
inexact
</p>
</th>
<th>
<p>
bias
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Schroeder <span class="emphasis"><em>W</em></span><sub>0</sub>
</p>
</td>
<td>
<p>
8804
</p>
</td>
<td>
<p>
1154
</p>
</td>
<td>
<p>
37
</p>
</td>
<td>
<p>
5
</p>
</td>
<td>
<p>
1243
</p>
</td>
<td>
<p>
-1193
</p>
</td>
</tr>
<tr>
<td>
<p>
after Halley step
</p>
</td>
<td>
<p>
9710
</p>
</td>
<td>
<p>
288
</p>
</td>
<td>
<p>
2
</p>
</td>
<td>
<p>
0
</p>
</td>
<td>
<p>
292
</p>
</td>
<td>
<p>
22
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> values computed using the Fukushima method with
Schroeder refinement gave about 1/6 <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
values that are one bit different from the 'best', and < 1% that are a few
bits 'wrong'. If a Halley refinement step is added, only 1 in 30 are even one
bit different, and only 2 two-bits 'wrong'.
</p>
<div class="table">
<a name="math_toolkit.lambert_w.lambert_w0_plus_halley"></a><p class="title"><b>Table 8.74. Rational polynomial Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> and typical improvement
from a single Halley step.</b></p>
<div class="table-contents"><table class="table" summary="Rational polynomial Lambert W0 and typical improvement
from a single Halley step.">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Method
</p>
</th>
<th>
<p>
Exact
</p>
</th>
<th>
<p>
One_bit
</p>
</th>
<th>
<p>
Two_bits
</p>
</th>
<th>
<p>
Few_bits
</p>
</th>
<th>
<p>
inexact
</p>
</th>
<th>
<p>
bias
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
rational/polynomial
</p>
</td>
<td>
<p>
7135
</p>
</td>
<td>
<p>
2863
</p>
</td>
<td>
<p>
2
</p>
</td>
<td>
<p>
0
</p>
</td>
<td>
<p>
2867
</p>
</td>
<td>
<p>
-59
</p>
</td>
</tr>
<tr>
<td>
<p>
after Halley step
</p>
</td>
<td>
<p>
9724
</p>
</td>
<td>
<p>
273
</p>
</td>
<td>
<p>
3
</p>
</td>
<td>
<p>
0
</p>
</td>
<td>
<p>
279
</p>
</td>
<td>
<p>
5
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
With the rational polynomial approximation method, there are a third one-bit
from the best and none more than two-bits. Adding a Halley step (or iteration)
reduces the number that are one-bit different from about a third down to one
in 30; this is unavoidable 'computational noise'. An extra Halley step would
double the runtime for a tiny gain and so is not chosen for this implementation,
but remains a option, as detailed above.
</p>
<p>
For the Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch, the Fukushima algorithm is
used.
</p>
<div class="table">
<a name="math_toolkit.lambert_w.lambert_wm1_fukushima"></a><p class="title"><b>Table 8.75. Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> using Fukushima algorithm.</b></p>
<div class="table-contents"><table class="table" summary="Lambert W-1 using Fukushima algorithm.">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Method
</p>
</th>
<th>
<p>
Exact
</p>
</th>
<th>
<p>
One_bit
</p>
</th>
<th>
<p>
Two_bits
</p>
</th>
<th>
<p>
Few_bits
</p>
</th>
<th>
<p>
inexact
</p>
</th>
<th>
<p>
bias
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
Fukushima <span class="emphasis"><em>W</em></span><sub>-1</sub>
</p>
</td>
<td>
<p>
7167
</p>
</td>
<td>
<p>
2704
</p>
</td>
<td>
<p>
129
</p>
</td>
<td>
<p>
0
</p>
</td>
<td>
<p>
2962
</p>
</td>
<td>
<p>
-160
</p>
</td>
</tr>
<tr>
<td>
<p>
plus Halley step
</p>
</td>
<td>
<p>
7379
</p>
</td>
<td>
<p>
2529
</p>
</td>
<td>
<p>
92
</p>
</td>
<td>
<p>
0
</p>
</td>
<td>
<p>
2713
</p>
</td>
<td>
<p>
549
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><h6>
<a name="math_toolkit.lambert_w.h19"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.lookup_tables"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.lookup_tables">Lookup
tables</a>
</h6>
<p>
For speed during the bisection, Fukushima's algorithm computes lookup tables
of powers of e and z for integral Lambert W. There are 64 elements in these
tables. The FORTRAN version (and the C++ translation by Veberic) computed these
(once) as <code class="computeroutput"><span class="keyword">static</span></code> data. This is
slower, may cause trouble with multithreading, and is slightly inaccurate because
of rounding errors from repeated(64) multiplications.
</p>
<p>
In this implementation the array values have been computed using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
50 decimal digit and output as C++ arrays 37 decimal digit <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> literals using <code class="computeroutput"><span class="identifier">max_digits10</span></code> precision
</p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">cpp_bin_float_quad</span><span class="special">>::</span><span class="identifier">max_digits10</span><span class="special">);</span>
</pre>
<p>
The arrays are as <code class="computeroutput"><span class="keyword">const</span></code> and <code class="computeroutput"><span class="keyword">constexpr</span></code> and <code class="computeroutput"><span class="keyword">static</span></code>
as possible (for the compiler version), using static constexpr macro. (See
<a href="../../../tools/lambert_w_lookup_table_generator.cpp" target="_top">lambert_w_lookup_table_generator.cpp</a>
The precision was chosen to ensure that if used as <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> arrays, then the values output
to <a href="../../../include/boost/math/special_functions/detail/lambert_w_lookup_table.ipp" target="_top">lambert_w_lookup_table.ipp</a>
will be the nearest representable value for the type chose by a <code class="computeroutput"><span class="keyword">typedef</span></code> in <a href="../../../include/boost/math/special_functions/lambert_w.hpp" target="_top">lambert_w.hpp</a>.
</p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">lookup_t</span><span class="special">;</span> <span class="comment">// Type for lookup table (`double` or `float`, or even `long double`?)</span>
</pre>
<p>
This is to allow for future use at higher precision, up to platforms that use
128-bit (hardware or software) for their <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> type.
</p>
<p>
The accuracy of the tables was confirmed using <a href="http://www.wolframalpha.com/" target="_top">Wolfram
Alpha</a> and agrees at the 37th decimal place, so ensuring that the value
is exactly read into even 128-bit <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code> to the nearest representation.
</p>
<h6>
<a name="math_toolkit.lambert_w.h20"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.higher_precision"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.higher_precision">Higher
precision</a>
</h6>
<p>
For types more precise than <code class="computeroutput"><span class="keyword">double</span></code>,
Fukushima reported that it was best to use the <code class="computeroutput"><span class="keyword">double</span></code>
estimate as a starting point, followed by refinement using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
iterations or other methods; our experience confirms this.
</p>
<p>
Using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
it is simple to compute very high precision values of Lambert W at least to
thousands of decimal digits over most of the range of z arguments.
</p>
<p>
For this reason, the lookup tables and bisection are only carried out at low
precision, usually <code class="computeroutput"><span class="keyword">double</span></code>, chosen
by the <code class="computeroutput"><span class="keyword">typedef</span> <span class="keyword">double</span>
<span class="identifier">lookup_t</span></code>. Unlike the FORTRAN version,
the lookup tables of Lambert_W of integral values are precomputed as C++ static
arrays of floating-point literals. The default is a <code class="computeroutput"><span class="keyword">typedef</span></code>
setting the type to <code class="computeroutput"><span class="keyword">double</span></code>. To
allow users to vary the precision from <code class="computeroutput"><span class="keyword">float</span></code>
to <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
these are computed to 128-bit precision to ensure that even platforms with
<code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
do not lose precision.
</p>
<p>
The FORTRAN version and translation only permits the z argument to be the largest
items in these lookup arrays, <code class="computeroutput"><span class="identifier">wm0s</span><span class="special">[</span><span class="number">64</span><span class="special">]</span>
<span class="special">=</span> <span class="number">3.99049</span></code>,
producing an error message and returning <code class="computeroutput"><span class="identifier">NaN</span></code>.
So 64 is the largest possible value ever returned from the <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
function. This is far from the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><>::</span><span class="identifier">max</span><span class="special">()</span></code> for even <code class="computeroutput"><span class="keyword">float</span></code>s.
Therefore this implementation uses an approximation or 'guess' and Halley's
method to refine the result. Logarithmic approximation is discussed at length
by R.M.Corless et al. (page 349). Here we use the first two terms of equation
4.19:
</p>
<pre class="programlisting"><span class="identifier">T</span> <span class="identifier">lz</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">T</span> <span class="identifier">llz</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">lz</span><span class="special">);</span>
<span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">lz</span> <span class="special">-</span> <span class="identifier">llz</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">llz</span> <span class="special">/</span> <span class="identifier">lz</span><span class="special">);</span>
</pre>
<p>
This gives a useful precision suitable for Halley refinement.
</p>
<p>
Similarly, for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch, tiny values very near
zero, W > 64 cannot be computed using the lookup table. For this region,
an approximation followed by a few (usually 3) Halley refinements. See <a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_near_zero">wm1_near_zero</a>.
</p>
<p>
For the less well-behaved regions for Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> <span class="emphasis"><em>z</em></span>
arguments near zero, and near the branch singularity at <span class="emphasis"><em>-1/e</em></span>,
some series functions are used.
</p>
<h6>
<a name="math_toolkit.lambert_w.h21"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.small_z"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.small_z">Small
values of argument z near zero</a>
</h6>
<p>
When argument <span class="emphasis"><em>z</em></span> is small and near zero, there is an efficient
and accurate series evaluation method available (implemented in <code class="computeroutput"><span class="identifier">lambert_w0_small_z</span></code>). There is no equivalent
for the <span class="emphasis"><em>W</em></span><sub>-1</sub> branch as this only covers argument <code class="computeroutput"><span class="identifier">z</span> <span class="special"><</span> <span class="special">-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span></code>.
The cutoff used <code class="computeroutput"><span class="identifier">abs</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special"><</span>
<span class="number">0.05</span></code> is as found by trial and error by
Fukushima.
</p>
<p>
Coefficients of the inverted series expansion of the Lambert W function around
<code class="computeroutput"><span class="identifier">z</span> <span class="special">=</span>
<span class="number">0</span></code> are computed following Fukushima using
17 terms of a Taylor series computed using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
Mathematica</a> with
</p>
<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">[</span><span class="identifier">Series</span><span class="special">[</span><span class="identifier">z</span> <span class="identifier">Exp</span><span class="special">[</span><span class="identifier">z</span><span class="special">],{</span><span class="identifier">z</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">17</span><span class="special">}]]</span>
</pre>
<p>
See Tosio Fukushima, Journal of Computational and Applied Mathematics 244 (2013),
page 86.
</p>
<p>
To provide higher precision constants (34 decimal digits) for types larger
than <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>,
</p>
<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">[</span><span class="identifier">Series</span><span class="special">[</span><span class="identifier">z</span> <span class="identifier">Exp</span><span class="special">[</span><span class="identifier">z</span><span class="special">],{</span><span class="identifier">z</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">34</span><span class="special">}]]</span>
</pre>
<p>
were also computed, but for current hardware it was found that evaluating a
<code class="computeroutput"><span class="keyword">double</span></code> precision and then refining
with Halley's method was quicker and more accurate.
</p>
<p>
Decimal values of specifications for built-in floating-point types below are
21 digits precision == <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">max_digits10</span></code> for <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code>.
</p>
<p>
Specializations for <code class="computeroutput"><span class="identifier">lambert_w0_small_z</span></code>
are provided for <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code>, <code class="computeroutput"><span class="identifier">float128</span></code>
and for <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
types.
</p>
<p>
The <code class="computeroutput"><span class="identifier">tag_type</span></code> selection is based
on the value <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special"><</span><span class="identifier">T</span><span class="special">>::</span><span class="identifier">max_digits10</span></code>
(and <span class="bold"><strong>not</strong></span> on the floating-point type T). This
distinguishes between <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
types that commonly vary between 64 and 80-bits, and also compilers that have
a <code class="computeroutput"><span class="keyword">float</span></code> type using 64 bits and/or
<code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
using 128-bits.
</p>
<p>
As noted in the <a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementation">implementation</a>
section above, it is only possible to ensure the nearest representable value
by casting from a higher precision type, computed at very, very much greater
cost.
</p>
<p>
For multiprecision types, first several terms of the series are tabulated and
evaluated as a polynomial: (this will save us a bunch of expensive calls to
<code class="computeroutput"><span class="identifier">pow</span></code>). Then our series functor
is initialized "as if" it had already reached term 18, enough evaluation
of built-in 64-bit double and float (and 80-bit <code class="computeroutput"><span class="keyword">long</span>
<span class="keyword">double</span></code>) types. Finally the functor is
called repeatedly to compute as many additional series terms as necessary to
achieve the desired precision, set from <code class="computeroutput"><span class="identifier">get_epsilon</span></code>
(or terminated by <code class="computeroutput"><span class="identifier">evaluation_error</span></code>
on reaching the set iteration limit <code class="computeroutput"><span class="identifier">max_series_iterations</span></code>).
</p>
<p>
A little more than one decimal digit of precision is gained by each additional
series term. This allows computation of Lambert W near zero to at least 1000
decimal digit precision, given sufficient compute time.
</p>
<h5>
<a name="math_toolkit.lambert_w.h22"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.near_singularity"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.near_singularity">Argument
z near the singularity at -1/e between branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
<span class="emphasis"><em>W</em></span><sub>-1</sub> </a>
</h5>
<p>
Variants of Function <code class="computeroutput"><span class="identifier">lambert_w_singularity_series</span></code>
are used to handle <span class="emphasis"><em>z</em></span> arguments which are near to the singularity
at <code class="computeroutput"><span class="identifier">z</span> <span class="special">=</span>
<span class="special">-</span><span class="identifier">exp</span><span class="special">(-</span><span class="number">1</span><span class="special">)</span>
<span class="special">=</span> <span class="special">-</span><span class="number">3.6787944</span></code> where the branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
<span class="emphasis"><em>W</em></span><sub>-1</sub> join.
</p>
<p>
T. Fukushima / Journal of Computational and Applied Mathematics 244 (2013)
77-89 describes using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
Mathematica</a>
</p>
<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">\[</span><span class="identifier">Series</span><span class="special">\[</span><span class="identifier">sqrt</span><span class="special">\[</span><span class="number">2</span><span class="special">(</span><span class="identifier">p</span> <span class="identifier">Exp</span><span class="special">\[</span><span class="number">1</span> <span class="special">+</span> <span class="identifier">p</span><span class="special">\]</span> <span class="special">+</span> <span class="number">1</span><span class="special">)\],</span> <span class="special">{</span><span class="identifier">p</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span> <span class="number">20</span><span class="special">}\]\]</span>
</pre>
<p>
to provide his Table 3, page 85.
</p>
<p>
This implementation used <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
Mathematica</a> to obtain 40 series terms at 50 decimal digit precision
</p>
<pre class="programlisting"><span class="identifier">N</span><span class="special">\[</span><span class="identifier">InverseSeries</span><span class="special">\[</span><span class="identifier">Series</span><span class="special">\[</span><span class="identifier">Sqrt</span><span class="special">\[</span><span class="number">2</span><span class="special">(</span><span class="identifier">p</span> <span class="identifier">Exp</span><span class="special">\[</span><span class="number">1</span> <span class="special">+</span> <span class="identifier">p</span><span class="special">\]</span> <span class="special">+</span> <span class="number">1</span><span class="special">)\],</span> <span class="special">{</span> <span class="identifier">p</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span><span class="number">40</span> <span class="special">}\]\],</span> <span class="number">50</span><span class="special">\]</span>
<span class="special">-</span><span class="number">1</span><span class="special">+</span><span class="identifier">p</span><span class="special">-</span><span class="identifier">p</span><span class="special">^</span><span class="number">2</span><span class="special">/</span><span class="number">3</span><span class="special">+(</span><span class="number">11</span> <span class="identifier">p</span><span class="special">^</span><span class="number">3</span><span class="special">)/</span><span class="number">72</span><span class="special">-(</span><span class="number">43</span> <span class="identifier">p</span><span class="special">^</span><span class="number">4</span><span class="special">)/</span><span class="number">540</span><span class="special">+(</span><span class="number">769</span> <span class="identifier">p</span><span class="special">^</span><span class="number">5</span><span class="special">)/</span><span class="number">17280</span><span class="special">-(</span><span class="number">221</span> <span class="identifier">p</span><span class="special">^</span><span class="number">6</span><span class="special">)/</span><span class="number">8505</span><span class="special">+(</span><span class="number">680863</span> <span class="identifier">p</span><span class="special">^</span><span class="number">7</span><span class="special">)/</span><span class="number">43545600</span> <span class="special">...</span>
</pre>
<p>
These constants are computed at compile time for the full precision for any
<code class="computeroutput"><span class="identifier">RealType</span> <span class="identifier">T</span></code>
using the original rationals from Fukushima Table 3.
</p>
<p>
Longer decimal digits strings are rationals pre-evaluated using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
Mathematica</a>. Some integer constants overflow, so largest size available
is used, suffixed by <code class="computeroutput"><span class="identifier">uLL</span></code>.
</p>
<p>
Above the 14th term, the rationals exceed the range of <code class="computeroutput"><span class="keyword">unsigned</span>
<span class="keyword">long</span> <span class="keyword">long</span></code>
and are replaced by pre-computed decimal values at least 21 digits precision
== <code class="computeroutput"><span class="identifier">max_digits10</span></code> for <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>.
</p>
<p>
A macro <code class="computeroutput"><span class="identifier">BOOST_MATH_TEST_VALUE</span></code>
(defined in <a href="../../../test/test_value.hpp" target="_top">test_value.hpp</a>)
taking a decimal floating-point literal was used to allow testing with both
built-in floating-point types like <code class="computeroutput"><span class="keyword">double</span></code>
which have constructors taking literal decimal values like <code class="computeroutput"><span class="number">3.14</span></code>,
<span class="bold"><strong>and</strong></span> also multiprecision and other User-defined
Types that only provide full-precision construction from decimal digit strings
like <code class="computeroutput"><span class="string">"3.14"</span></code>. (Construction
of multiprecision types from built-in floating-point types only provides the
precision of the built-in type, like <code class="computeroutput"><span class="keyword">double</span></code>,
only 17 decimal digits).
</p>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top"><p>
Be exceeding careful not to silently lose precision by constructing multiprecision
types from literal decimal types, usually <code class="literal">double</code>. Use
decimal digit strings like "3.1459" instead. See examples.
</p></td></tr>
</table></div>
<p>
Fukushima's implementation used 20 series terms; it was confirmed that using
more terms does not usefully increase accuracy.
</p>
<h6>
<a name="math_toolkit.lambert_w.h23"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.wm1_near_zero"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_near_zero">Lambert
<span class="emphasis"><em>W</em></span><sub>-1</sub> arguments values very near zero.</a>
</h6>
<p>
The lookup tables of Fukushima have only 64 elements, so that the z argument
nearest zero is -1.0264389699511303e-26, that corresponds to a maximum Lambert
<span class="emphasis"><em>W</em></span><sub>-1</sub> value of 64.0. Fukushima's implementation did not cater
for z argument values that are smaller (nearer to zero), but this implementation
adds code to accept smaller (but not denormalised) values of z. A crude approximation
for these very small values is to take the exponent and multiply by ln[10]
~= 2.3. We also tried the approximation first proposed by Corless et al. using
ln(-z), (equation 4.19 page 349) and then tried improving by a 2nd term -ln(ln(-z)),
and finally the ratio term -ln(ln(-z))/ln(-z).
</p>
<p>
For a z very close to z = -1.0264389699511303e-26 when W = 64, when effect
of ln(ln(-z) term, and ratio L1/L2 is greatest, the possible 'guesses' are
</p>
<pre class="programlisting"><span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="number">1.e-26</span><span class="special">,</span> <span class="identifier">w</span> <span class="special">=</span> <span class="special">-</span><span class="number">64.02</span><span class="special">,</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="special">-</span><span class="number">64.0277</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">59.8672</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="number">4.0921</span><span class="special">,</span> <span class="identifier">llz</span><span class="special">/</span><span class="identifier">lz</span> <span class="special">=</span> <span class="special">-</span><span class="number">0.0684</span>
</pre>
<p>
whereas at the minimum (unnormalized) z
</p>
<pre class="programlisting"><span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="number">2.2250e-308</span><span class="special">,</span> <span class="identifier">w</span> <span class="special">=</span> <span class="special">-</span><span class="number">714.9</span><span class="special">,</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="special">-</span><span class="number">714.9687</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">708.3964</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="number">6.5630</span><span class="special">,</span> <span class="identifier">llz</span><span class="special">/</span><span class="identifier">lz</span> <span class="special">=</span> <span class="special">-</span><span class="number">0.0092</span>
</pre>
<p>
Although the addition of the 3rd ratio term did not reduce the number of Halley
iterations needed, it might allow return of a better low precision estimate
<span class="bold"><strong>without any Halley iterations</strong></span>. For the worst
case near w = 64, the error in the 'guess' is 0.008, ratio 0.0001 or 1 in 10,000
digits 10 ~= 4. Two log evaluations are still needed, but is probably over
an order of magnitude faster.
</p>
<p>
Halley's method was then used to refine the estimate of Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> from
this guess. Experiments showed that although all approximations reached with
<a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit in the
last place (ULP)</a> of the closest representable value, the computational
cost of the log functions was easily paid by far fewer iterations (typically
from 8 down to 4 iterations for double or float).
</p>
<h6>
<a name="math_toolkit.lambert_w.h24"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.halley"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.halley">Halley
refinement</a>
</h6>
<p>
After obtaining a double approximation, for <code class="computeroutput"><span class="keyword">double</span></code>,
<code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
and <code class="computeroutput"><span class="identifier">quad</span></code> 128-bit precision,
a single iteration should suffice because Halley iteration should triple the
precision with each step (as long as the function is well behaved - and it
is), and since we have at least half of the bits correct already, one Halley
step is ample to get to 128-bit precision.
</p>
<h6>
<a name="math_toolkit.lambert_w.h25"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.lambert_w_derivatives"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.lambert_w_derivatives">Lambert
W Derivatives</a>
</h6>
<p>
The derivatives are computed using the formulae in <a href="https://en.wikipedia.org/wiki/Lambert_W_function#Derivative" target="_top">Wikipedia</a>.
</p>
<h5>
<a name="math_toolkit.lambert_w.h26"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.testing"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.testing">Testing</a>
</h5>
<p>
Initial testing of the algorithm was done using a small number of spot tests.
</p>
<p>
After it was established that the underlying algorithm (including unlimited
Halley refinements with a tight terminating criterion) was correct, some tables
of Lambert W values were computed using a 100 decimal digit precision <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
<code class="computeroutput"><span class="identifier">cpp_dec_float_100</span></code> type and
saved as a C++ program that will initialise arrays of values of z arguments
and lambert_W0 (<code class="computeroutput"><span class="identifier">lambert_w_mp_high_values</span><span class="special">.</span><span class="identifier">ipp</span></code> and
<code class="computeroutput"><span class="identifier">lambert_w_mp_low_values</span><span class="special">.</span><span class="identifier">ipp</span></code> ).
</p>
<p>
(A few of these pairs were checked against values computed by Wolfram Alpha
to try to guard against mistakes; all those tested agreed to the penultimate
decimal place, so they can be considered reliable to at least 98 decimal digits
precision).
</p>
<p>
A macro <code class="computeroutput"><span class="identifier">BOOST_MATH_TEST_VALUE</span></code>
was used to allow tests with any real type, both <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
(built-in) types</a> and <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
(This is necessary because <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
(built-in) types</a> have a constructor from floating-point literals like
3.1459F, 3.1459 or 3.1459L whereas <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
types may lose precision unless constructed from decimal digits strings like
"3.1459").
</p>
<p>
The 100-decimal digits precision pairs were then used to assess the precision
of less-precise types, including <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
<code class="computeroutput"><span class="identifier">cpp_bin_float_quad</span></code> and <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>. <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
from the high precision types should give the closest representable value of
the less-precise type; this is then be used to assess the precision of the
Lambert W algorithm.
</p>
<p>
Tests using confirm that over nearly all the range of z arguments, nearly all
estimates are the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
value, a minority are within 1 <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
in the last place (ULP)</a> and only a very few 2 ULP.
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_w0_errors_graph.svg" align="middle"></span>
</p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_errors_graph.svg" align="middle"></span>
</p></blockquote></div>
<p>
For the range of z arguments over the range -0.35 to 0.5, a different algorithm
is used, but the same technique of evaluating reference values using a <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
<code class="computeroutput"><span class="identifier">cpp_dec_float_100</span></code> was used.
For extremely small z arguments, near zero, and those extremely near the singularity
at the branch point, precision can be much lower, as might be expected.
</p>
<p>
See source at: <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
<a href="../../../test/test_lambert_w.cpp" target="_top">test_lambert_w.cpp</a> contains
routine tests using <a href="https://www.boost.org/doc/libs/release/libs/test/doc/html/index.html" target="_top">Boost.Test</a>.
<a href="../../../tools/lambert_w_errors_graph.cpp" target="_top">lambert_w_errors_graph.cpp</a>
generating error graphs.
</p>
<h6>
<a name="math_toolkit.lambert_w.h27"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.quadrature_testing"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.quadrature_testing">Testing
with quadrature</a>
</h6>
<p>
A further method of testing over a wide range of argument z values was devised
by Nick Thompson (cunningly also to test the recently written quadrature routines
including <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
!). These are definite integral formulas involving the W function that are
exactly known constants, for example, LambertW0(1/(z²) == √(2π), see <a href="https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals" target="_top">Definite
Integrals</a>. Some care was needed to avoid overflow and underflow as
the integral function must evaluate to a finite result over the entire range.
</p>
<h6>
<a name="math_toolkit.lambert_w.h28"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.other_implementations"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.other_implementations">Other
implementations</a>
</h6>
<p>
The Lambert W has also been discussed in a <a href="http://lists.boost.org/Archives/boost/2016/09/230819.php" target="_top">Boost
thread</a>.
</p>
<p>
This also gives link to a prototype version by which also gives complex results
<code class="literal">(x < -exp(-1)</code>, about -0.367879). <a href="https://github.com/CzB404/lambert_w/" target="_top">Balazs
Cziraki 2016</a> Physicist, PhD student at Eotvos Lorand University, ELTE
TTK Institute of Physics, Budapest. has also produced a prototype C++ library
that can compute the Lambert W function for floating point <span class="bold"><strong>and
complex number types</strong></span>. This is not implemented here but might be
completed in the future.
</p>
<h5>
<a name="math_toolkit.lambert_w.h29"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.acknowledgements"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.acknowledgements">Acknowledgements</a>
</h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
Thanks to Wolfram for use of their invaluable online Wolfram Alpha service.
</li>
<li class="listitem">
Thanks for Mark Chapman for performing offline Wolfram computations.
</li>
</ul></div>
<h5>
<a name="math_toolkit.lambert_w.h30"></a>
<span class="phrase"><a name="math_toolkit.lambert_w.references"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.references">References</a>
</h5>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
NIST Digital Library of Mathematical Functions. <a href="http://dlmf.nist.gov/4.13.F1" target="_top">http://dlmf.nist.gov/4.13.F1</a>.
</li>
<li class="listitem">
<a href="http://www.orcca.on.ca/LambertW/" target="_top">Lambert W Poster</a>,
R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffery and D. E. Knuth,
On the Lambert W function Advances in Computational Mathematics, Vol 5,
(1996) pp 329-359.
</li>
<li class="listitem">
<a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms443/toms443.html" target="_top">TOMS443</a>,
Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, Algorithm 743: WAPR
- A Fortran routine for calculating real values of the W-function,<br>
ACM Transactions on Mathematical Software, Volume 21, Number 2, June 1995,
pages 172-181.<br> BISECT approximates the W function using bisection
(GNU licence). Original FORTRAN77 version by Andrew Barry, S. J. Barry,
Patricia Culligan-Hensley, this version by C++ version by John Burkardt.
</li>
<li class="listitem">
<a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms743/toms743.html" target="_top">TOMS743</a>
Fortran 90 (updated 2014).
</li>
</ol></div>
<p>
Initial guesses based on:
</p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
R.M.Corless, G.H.Gonnet, D.E.G.Hare, D.J.Jeffrey, and D.E.Knuth, On the
Lambert W function, Adv.Comput.Math., vol. 5, pp. 329 to 359, (1996).
</li>
<li class="listitem">
D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, and F.
Stagnitti. Analytical approximations for real values of the Lambert W-function.
Mathematics and Computers in Simulation, 53(1), 95-103 (2000).
</li>
<li class="listitem">
D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, and F.
Stagnitti. Erratum to analytical approximations for real values of the
Lambert W-function. Mathematics and Computers in Simulation, 59(6):543-543,
2002.
</li>
<li class="listitem">
C++ <a href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-cplusplus-language-support" target="_top">CUDA
NVidia GPU C/C++ language support</a> version of Luu algorithm, <a href="https://github.com/thomasluu/plog/blob/master/plog.cu" target="_top">plog</a>.
</li>
<li class="listitem">
<a href="http://discovery.ucl.ac.uk/1482128/1/Luu_thesis.pdf" target="_top">Thomas
Luu, Thesis, University College London (2015)</a>, see routine 11,
page 98 for Lambert W algorithm.
</li>
<li class="listitem">
Having Fun with Lambert W(x) Function, Darko Veberic University of Nova
Gorica, Slovenia IK, Forschungszentrum Karlsruhe, Germany, J. Stefan Institute,
Ljubljana, Slovenia.
</li>
<li class="listitem">
François Chapeau-Blondeau and Abdelilah Monir, Numerical Evaluation of the
Lambert W Function and Application to Generation of Generalized Gaussian
Noise With Exponent 1/2, IEEE Transactions on Signal Processing, 50(9)
(2002) 2160 - 2165.
</li>
<li class="listitem">
Toshio Fukushima, Precise and fast computation of Lambert W-functions without
transcendental function evaluations, Journal of Computational and Applied
Mathematics, 244 (2013) 77-89.
</li>
<li class="listitem">
T.C. Banwell and A. Jayakumar, Electronic Letter, Feb 2000, 36(4), pages
291-2. Exact analytical solution for current flow through diode with series
resistance. <a href="https://doi.org/10.1049/el:20000301" target="_top">https://doi.org/10.1049/el:20000301</a>
</li>
<li class="listitem">
Princeton Companion to Applied Mathematics, 'The Lambert-W function', Section
1.3: Series and Generating Functions.
</li>
<li class="listitem">
Cleve Moler, Mathworks blog <a href="https://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function/#bfba4e2d-e049-45a6-8285-fe8b51d69ce7" target="_top">The
Lambert W Function</a>
</li>
<li class="listitem">
Digital Library of Mathematical Function, <a href="https://dlmf.nist.gov/4.13" target="_top">Lambert
W function</a>.
</li>
</ol></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="jacobi_theta/jacobi_theta4.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="zetas.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|