File: lambert_w.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (1926 lines) | stat: -rw-r--r-- 172,678 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Lambert W function</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../special.html" title="Chapter 8. Special Functions">
<link rel="prev" href="jacobi_theta/jacobi_theta4.html" title="Jacobi Theta Function θ4">
<link rel="next" href="zetas.html" title="Zeta Functions">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="jacobi_theta/jacobi_theta4.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="zetas.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.lambert_w"></a><a class="link" href="lambert_w.html" title="Lambert W function">Lambert <span class="emphasis"><em>W</em></span>
    function</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.lambert_w.h0"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.synopsis"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.synopsis">Synopsis</a>
    </h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span> <span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span> <span class="special">{</span>

  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                        <span class="comment">// W0 branch, default policy.</span>
  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                       <span class="comment">// W-1 branch, default policy.</span>
  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                  <span class="comment">// W0 branch 1st derivative.</span>
  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>                 <span class="comment">// W-1 branch 1st derivative.</span>

  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>         <span class="comment">// W0 with policy.</span>
  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>        <span class="comment">// W-1 with policy.</span>
  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_w0_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>   <span class="comment">// W0 derivative with policy.</span>
  <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
  <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">lambert_wm1_prime</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>  <span class="comment">// W-1 derivative with policy.</span>

 <span class="special">}</span> <span class="comment">// namespace boost</span>
 <span class="special">}</span> <span class="comment">// namespace math</span>
</pre>
<h5>
<a name="math_toolkit.lambert_w.h1"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.description"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.description">Description</a>
    </h5>
<p>
      The <a href="http://en.wikipedia.org/wiki/Lambert_W_function" target="_top">Lambert W
      function</a> is the solution of the equation <span class="emphasis"><em>W</em></span>(<span class="emphasis"><em>z</em></span>)<span class="emphasis"><em>e</em></span><sup><span class="emphasis"><em>W</em></span>(<span class="emphasis"><em>z</em></span>)</sup> =
      <span class="emphasis"><em>z</em></span>. It is also called the Omega function, the inverse of
      <span class="emphasis"><em>f</em></span>(<span class="emphasis"><em>W</em></span>) = <span class="emphasis"><em>We</em></span><sup><span class="emphasis"><em>W</em></span></sup>.
    </p>
<p>
      On the interval [0, ∞), there is just one real solution. On the interval (-<span class="emphasis"><em>e</em></span><sup>-1</sup>,
      0), there are two real solutions, generating two branches which we will denote
      by <span class="emphasis"><em>W</em></span><sub>0</sub> and <span class="emphasis"><em>W</em></span><sub>-1</sub>. In Boost.Math, we call
      these principal branches <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
      and <code class="computeroutput"><span class="identifier">lambert_wm1</span></code>; their derivatives
      are labelled <code class="computeroutput"><span class="identifier">lambert_w0_prime</span></code>
      and <code class="computeroutput"><span class="identifier">lambert_wm1_prime</span></code>.
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_w_graph.svg" align="middle"></span>

      </p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_w_graph_big_W.svg" align="middle"></span>

      </p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_w0_prime_graph.svg" align="middle"></span>

      </p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_prime_graph.svg" align="middle"></span>

      </p></blockquote></div>
<p>
      There is a singularity where the branches meet at <span class="emphasis"><em>e</em></span><sup>-1</sup> ≅ <code class="literal">-0.367879</code>.
      Approaching this point, the condition number of function evaluation tends to
      infinity, and the only method of recovering high accuracy is use of higher
      precision.
    </p>
<p>
      This implementation computes the two real branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
      <span class="emphasis"><em>W</em></span><sub>-1</sub>
with the functions <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
      and <code class="computeroutput"><span class="identifier">lambert_wm1</span></code>, and their
      derivatives, <code class="computeroutput"><span class="identifier">lambert_w0_prime</span></code>
      and <code class="computeroutput"><span class="identifier">lambert_wm1_prime</span></code>. Complex
      arguments are not supported.
    </p>
<p>
      The final <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
      be used to control how the function deals with errors. Refer to <a class="link" href="../policy.html" title="Chapter 22. Policies: Controlling Precision, Error Handling etc">Policies</a>
      for more details and see examples below.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h2"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.applications"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.applications">Applications
      of the Lambert <span class="emphasis"><em>W</em></span> function</a>
    </h6>
<p>
      The Lambert <span class="emphasis"><em>W</em></span> function has a myriad of applications.
      <a href="http://www.apmaths.uwo.ca/~djeffrey/Offprints/W-adv-cm.pdf" target="_top">Corless
      et al.</a> provide a summary of applications, from the mathematical, like
      iterated exponentiation and asymptotic roots of trinomials, to the real-world,
      such as the range of a jet plane, enzyme kinetics, water movement in soil,
      epidemics, and diode current (an example replicated <a href="../../../example/lambert_w_diode.cpp" target="_top">here</a>).
      Since the publication of their landmark paper, there have been many more applications,
      and also many new implementations of the function, upon which this implementation
      builds.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h3"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.examples"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.examples">Examples</a>
    </h5>
<p>
      The most basic usage of the Lambert-<span class="emphasis"><em>W</em></span> function is demonstrated
      below:
    </p>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span> <span class="comment">// For lambert_w function.</span>

<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w0</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_wm1</span><span class="special">;</span>
</pre>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="comment">// Show all potentially significant decimal digits,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// and show significant trailing zeros too.</span>

<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">10.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy for double.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(z) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(z) = 1.7455280027406994</span>
</pre>
<p>
      Other floating-point types can be used too, here <code class="computeroutput"><span class="keyword">float</span></code>,
      including user-defined types like <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
      It is convenient to use a function like <code class="computeroutput"><span class="identifier">show_value</span></code>
      to display all (and only) potentially significant decimal digits, including
      any significant trailing zeros, (<code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code>) for the type <code class="computeroutput"><span class="identifier">T</span></code>.
    </p>
<pre class="programlisting"><span class="keyword">float</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">10.F</span><span class="special">;</span>
<span class="keyword">float</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>        <span class="comment">// Default policy digits10 = 7, digits2 = 24</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>   <span class="comment">// lambert_w0(10.0000000) = 1.74552798</span>
</pre>
<p>
      Example of an integer argument to <code class="computeroutput"><span class="identifier">lambert_w0</span></code>,
      showing that an <code class="computeroutput"><span class="keyword">int</span></code> literal is
      correctly promoted to a <code class="computeroutput"><span class="keyword">double</span></code>.
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>                           <span class="comment">// Pass an int argument "10" that should be promoted to double argument.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(10) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>  <span class="comment">// lambert_w0(10) = 1.7455280027406994</span>
<span class="keyword">double</span> <span class="identifier">rp</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(10) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">rp</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(10) = 1.7455280027406994</span>
<span class="keyword">auto</span> <span class="identifier">rr</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">10</span><span class="special">);</span>                            <span class="comment">// C++11 needed.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(10) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">rr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(10) = 1.7455280027406994 too, showing that rr has been promoted to double.</span>
</pre>
<p>
      Using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      types to get much higher precision is painless.
    </p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"10"</span><span class="special">);</span>
<span class="comment">// Note construction using a decimal digit string "10",</span>
<span class="comment">// NOT a floating-point double literal 10.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(10.000000000000000000000000000000000000000000000000000000000000000000000000000000) =</span>
<span class="comment">//   1.7455280027406993830743012648753899115352881290809413313533156980404446940000000</span>
</pre>
<div class="warning"><table border="0" summary="Warning">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Warning]" src="../../../../../doc/src/images/warning.png"></td>
<th align="left">Warning</th>
</tr>
<tr><td align="left" valign="top"><p>
        When using multiprecision, take very great care not to construct or assign
        non-integers from <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">float</span></code> ... silently losing precision. Use
        <code class="computeroutput"><span class="string">"1.2345678901234567890123456789"</span></code>
        rather than <code class="computeroutput"><span class="number">1.2345678901234567890123456789</span></code>.
      </p></td></tr>
</table></div>
<p>
      Using multiprecision types, it is all too easy to get multiprecision precision
      wrong!
    </p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="number">0.7777777777777777777777777777777777777777777777777777777777777777777777777</span><span class="special">);</span>
<span class="comment">// Compiler evaluates the nearest double-precision binary representation,</span>
<span class="comment">// from the max_digits10 of the floating_point literal double 0.7777777777777777777777777777...,</span>
<span class="comment">// so any extra digits in the multiprecision type</span>
<span class="comment">// beyond max_digits10 (usually 17) are random and meaningless.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(0.77777777777777779011358916250173933804035186767578125000000000000000000000000000)</span>
<span class="comment">//   = 0.48086152073210493501934682309060873341910109230469724725005039758139532631901386</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
        See spurious non-seven decimal digits appearing after digit #17 in the argument
        0.7777777777777777...!
      </p></td></tr>
</table></div>
<p>
      And similarly constructing from a literal <code class="computeroutput"><span class="keyword">double</span>
      <span class="number">0.9</span></code>, with more random digits after digit
      number 17.
    </p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="number">0.9</span><span class="special">);</span> <span class="comment">// Construct from floating_point literal double 0.9.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="number">0.9</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// lambert_w0(0.90000000000000002220446049250313080847263336181640625000000000000000000000000000)</span>
<span class="comment">//   = 0.52983296563343440510607251781038939952850341796875000000000000000000000000000000</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(0.9) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="number">0.9</span><span class="special">))</span>
<span class="comment">// lambert_w0(0.9)</span>
<span class="comment">//   = 0.52983296563343441</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
      Note how the <code class="computeroutput"><span class="identifier">cpp_float_dec_50</span></code>
      result is only as correct as from a <code class="computeroutput"><span class="keyword">double</span>
      <span class="special">=</span> <span class="number">0.9</span></code>.
    </p>
<p>
      Now see the correct result for all 50 decimal digits constructing from a decimal
      digit string "0.9":
    </p>
<pre class="programlisting"><span class="identifier">cpp_dec_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"0.9"</span><span class="special">);</span>     <span class="comment">// Construct from decimal digit string.</span>
<span class="identifier">cpp_dec_float_50</span> <span class="identifier">r</span><span class="special">;</span>
<span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0("</span><span class="special">;</span>
<span class="identifier">show_value</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span><span class="special">;</span> <span class="identifier">show_value</span><span class="special">(</span><span class="identifier">r</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// 0.90000000000000000000000000000000000000000000000000000000000000000000000000000000)</span>
<span class="comment">// = 0.52983296563343441213336643954546304857788132269804249284012528304239956413801252</span>
</pre>
<p>
      Note the expected zeros for all places up to 50 - and the correct Lambert
      <span class="emphasis"><em>W</em></span> result!
    </p>
<p>
      (It is just as easy to compute even higher precisions, at least to thousands
      of decimal digits, but not shown here for brevity. See <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
      for comparison of an evaluation at 1000 decimal digit precision with <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>).
    </p>
<p>
      Policies can be used to control what action to take on errors:
    </p>
<pre class="programlisting"><span class="comment">// Define an error handling policy:</span>
<span class="keyword">typedef</span> <span class="identifier">policy</span><span class="special">&lt;</span>
  <span class="identifier">domain_error</span><span class="special">&lt;</span><span class="identifier">throw_on_error</span><span class="special">&gt;,</span>
  <span class="identifier">overflow_error</span><span class="special">&lt;</span><span class="identifier">ignore_error</span><span class="special">&gt;</span> <span class="comment">// possibly unwise?</span>
<span class="special">&gt;</span> <span class="identifier">my_throw_policy</span><span class="special">;</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
<span class="comment">// Show all potentially significant decimal digits,</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// and show significant trailing zeros too.</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">+</span><span class="number">1</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Lambert W (1.0000000000000000) = 0.56714329040978384</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"\nLambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">", my_throw_policy()) = "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">,</span> <span class="identifier">my_throw_policy</span><span class="special">())</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Lambert W (1.0000000000000000, my_throw_policy()) = 0.56714329040978384</span>
</pre>
<p>
      An example error message:
    </p>
<pre class="programlisting"><span class="identifier">Error</span> <span class="identifier">in</span> <span class="identifier">function</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_wm1</span><span class="special">&lt;</span><span class="identifier">RealType</span><span class="special">&gt;(&lt;</span><span class="identifier">RealType</span><span class="special">&gt;):</span>
<span class="identifier">Argument</span> <span class="identifier">z</span> <span class="special">=</span> <span class="number">1</span> <span class="identifier">is</span> <span class="identifier">out</span> <span class="identifier">of</span> <span class="identifier">range</span> <span class="special">(</span><span class="identifier">z</span> <span class="special">&lt;=</span> <span class="number">0</span><span class="special">)</span> <span class="keyword">for</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="identifier">branch</span><span class="special">!</span> <span class="special">(</span><span class="identifier">Try</span> <span class="identifier">Lambert</span> <span class="identifier">W0</span> <span class="identifier">branch</span><span class="special">?)</span>
</pre>
<p>
      Showing an error reported if a value is passed to <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
      that is out of range, (and was probably meant to be passed to <code class="computeroutput"><span class="identifier">lambert_wm1</span></code> instead).
    </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="special">+</span><span class="number">1.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_wm1(+1.) = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
      The full source of these examples is at <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
    </p>
<h6>
<a name="math_toolkit.lambert_w.h4"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.diode_resistance"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.diode_resistance">Diode
      Resistance Example</a>
    </h6>
<p>
      A typical example of a practical application is estimating the current flow
      through a diode with series resistance from a paper by Banwell and Jayakumar.
    </p>
<p>
      Having the Lambert <span class="emphasis"><em>W</em></span> function available makes it simple
      to reproduce the plot in their paper (Fig 2) comparing estimates using with
      Lambert <span class="emphasis"><em>W</em></span> function and some actual measurements. The colored
      curves show the effect of various series resistance on the current compared
      to an extrapolated line in grey with no internal (or external) resistance.
    </p>
<p>
      Two formulae relating the diode current and effect of series resistance can
      be combined, but yield an otherwise intractable equation relating the current
      versus voltage with a varying series resistance. This was reformulated as a
      generalized equation in terms of the Lambert W function:
    </p>
<p>
      Banwell and Jakaumar equation 5
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="serif_italic">I(V) = μ V<sub>T</sub>/ R <sub>S</sub> ․ W<sub>0</sub>(I<sub>0</sub> R<sub>S</sub> / (μ V<sub>T</sub>))</span>
      </p></blockquote></div>
<p>
      Using these variables
    </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">nu</span> <span class="special">=</span> <span class="number">1.0</span><span class="special">;</span> <span class="comment">// Assumed ideal.</span>
<span class="keyword">double</span> <span class="identifier">vt</span> <span class="special">=</span> <span class="identifier">v_thermal</span><span class="special">(</span><span class="number">25</span><span class="special">);</span> <span class="comment">// v thermal, Shockley equation, expect about 25 mV at room temperature.</span>
<span class="keyword">double</span> <span class="identifier">boltzmann_k</span> <span class="special">=</span> <span class="number">1.38e-23</span><span class="special">;</span> <span class="comment">// joules/kelvin</span>
<span class="keyword">double</span> <span class="identifier">temp</span> <span class="special">=</span> <span class="number">273</span> <span class="special">+</span> <span class="number">25</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">charge_q</span> <span class="special">=</span> <span class="number">1.6e-19</span><span class="special">;</span> <span class="comment">// column</span>
<span class="identifier">vt</span> <span class="special">=</span> <span class="identifier">boltzmann_k</span> <span class="special">*</span> <span class="identifier">temp</span> <span class="special">/</span> <span class="identifier">charge_q</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"V thermal "</span> <span class="special">&lt;&lt;</span> <span class="identifier">vt</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// V thermal 0.0257025 = 25 mV</span>
<span class="keyword">double</span> <span class="identifier">rsat</span> <span class="special">=</span> <span class="number">0.</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">isat</span> <span class="special">=</span> <span class="number">25.e-15</span><span class="special">;</span> <span class="comment">//  25 fA;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Isat = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">isat</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">re</span> <span class="special">=</span> <span class="number">0.3</span><span class="special">;</span>  <span class="comment">// Estimated from slope of straight section of graph (equation 6).</span>
<span class="keyword">double</span> <span class="identifier">v</span> <span class="special">=</span> <span class="number">0.9</span><span class="special">;</span>
<span class="keyword">double</span> <span class="identifier">icalc</span> <span class="special">=</span> <span class="identifier">iv</span><span class="special">(</span><span class="identifier">v</span><span class="special">,</span> <span class="identifier">vt</span><span class="special">,</span> <span class="number">249.</span><span class="special">,</span> <span class="identifier">re</span><span class="special">,</span> <span class="identifier">isat</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"voltage = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">v</span> <span class="special">&lt;&lt;</span> <span class="string">", current = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">icalc</span> <span class="special">&lt;&lt;</span> <span class="string">", "</span> <span class="special">&lt;&lt;</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">icalc</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// voltage = 0.9, current = 0.00108485, -6.82631</span>
</pre>
<p>
      the formulas can be rendered in C++
    </p>
<pre class="programlisting"><span class="keyword">double</span> <span class="identifier">iv</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">v</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">vt</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">rsat</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">re</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">isat</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span> <span class="special">=</span> <span class="number">1.</span><span class="special">)</span>
<span class="special">{</span>
  <span class="comment">// V thermal 0.0257025 = 25 mV</span>
  <span class="comment">// was double i = (nu * vt/r) * lambert_w((i0 * r) / (nu * vt)); equ 5.</span>

  <span class="identifier">rsat</span> <span class="special">=</span> <span class="identifier">rsat</span> <span class="special">+</span> <span class="identifier">re</span><span class="special">;</span>
  <span class="keyword">double</span> <span class="identifier">i</span> <span class="special">=</span> <span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span> <span class="special">/</span> <span class="identifier">rsat</span><span class="special">;</span>
 <span class="comment">// std::cout &lt;&lt; "nu * vt / rsat = " &lt;&lt; i &lt;&lt; std::endl; // 0.000103223</span>

  <span class="keyword">double</span> <span class="identifier">x</span> <span class="special">=</span> <span class="identifier">isat</span> <span class="special">*</span> <span class="identifier">rsat</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span><span class="special">);</span>
<span class="comment">//  std::cout &lt;&lt; "isat * rsat / (nu * vt) = " &lt;&lt; x &lt;&lt; std::endl;</span>

  <span class="keyword">double</span> <span class="identifier">eterm</span> <span class="special">=</span> <span class="special">(</span><span class="identifier">v</span> <span class="special">+</span> <span class="identifier">isat</span> <span class="special">*</span> <span class="identifier">rsat</span><span class="special">)</span> <span class="special">/</span> <span class="special">(</span><span class="identifier">nu</span> <span class="special">*</span> <span class="identifier">vt</span><span class="special">);</span>
 <span class="comment">// std::cout &lt;&lt; "(v + isat * rsat) / (nu * vt) = " &lt;&lt; eterm &lt;&lt; std::endl;</span>

  <span class="keyword">double</span> <span class="identifier">e</span> <span class="special">=</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">eterm</span><span class="special">);</span>
<span class="comment">//  std::cout &lt;&lt; "exp(eterm) = " &lt;&lt; e &lt;&lt; std::endl;</span>

  <span class="keyword">double</span> <span class="identifier">w0</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">x</span> <span class="special">*</span> <span class="identifier">e</span><span class="special">);</span>
<span class="comment">//  std::cout &lt;&lt; "w0 = " &lt;&lt; w0 &lt;&lt; std::endl;</span>
  <span class="keyword">return</span> <span class="identifier">i</span> <span class="special">*</span> <span class="identifier">w0</span> <span class="special">-</span> <span class="identifier">isat</span><span class="special">;</span>
<span class="special">}</span> <span class="comment">// double iv</span>
</pre>
<p>
      to reproduce their Fig 2:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/diode_iv_plot.svg" align="middle"></span>

      </p></blockquote></div>
<p>
      The plotted points for no external series resistance (derived from their published
      plot as the raw data are not publicly available) are used to extrapolate back
      to estimate the intrinsic emitter resistance as 0.3 ohm. The effect of external
      series resistance is visible when the colored lines start to curve away from
      the straight line as voltage increases.
    </p>
<p>
      See <a href="../../../example/lambert_w_diode.cpp" target="_top">lambert_w_diode.cpp</a>
      and <a href="../../../example/lambert_w_diode_graph.cpp" target="_top">lambert_w_diode_graph.cpp</a>
      for details of the calculation.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h5"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.implementations"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementations">Existing
      implementations</a>
    </h6>
<p>
      The principal value of the Lambert <span class="emphasis"><em>W</em></span> function is implemented
      in the <a href="http://mathworld.wolfram.com/LambertW-Function.html" target="_top">Wolfram
      Language</a> as <code class="computeroutput"><span class="identifier">ProductLog</span><span class="special">[</span><span class="identifier">k</span><span class="special">,</span>
      <span class="identifier">z</span><span class="special">]</span></code>,
      where <code class="computeroutput"><span class="identifier">k</span></code> is the branch.
    </p>
<p>
      The symbolic algebra program <a href="https://www.maplesoft.com" target="_top">Maple</a>
      also computes Lambert <span class="emphasis"><em>W</em></span> to an arbitrary precision.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h6"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.precision"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.precision">Controlling
      the compromise between Precision and Speed</a>
    </h5>
<h6>
<a name="math_toolkit.lambert_w.h7"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.small_floats"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.small_floats">Floating-point
      types <code class="computeroutput"><span class="keyword">double</span></code> and <code class="computeroutput"><span class="keyword">float</span></code></a>
    </h6>
<p>
      This implementation provides good precision and excellent speed for __fundamental
      <code class="computeroutput"><span class="keyword">float</span></code> and <code class="computeroutput"><span class="keyword">double</span></code>.
    </p>
<p>
      All the functions usually return values within a few <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
      in the last place (ULP)</a> for the floating-point type, except for very
      small arguments very near zero, and for arguments very close to the singularity
      at the branch point.
    </p>
<p>
      By default, this implementation provides the best possible speed. Very slightly
      average higher precision and less bias might be obtained by adding a <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a> step refinement, but
      at the cost of more than doubling the runtime.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h8"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.big_floats"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.big_floats">Floating-point
      types larger than double</a>
    </h6>
<p>
      For floating-point types with precision greater than <code class="computeroutput"><span class="keyword">double</span></code>
      and <code class="computeroutput"><span class="keyword">float</span></code> <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
      (built-in) types</a>, a <code class="computeroutput"><span class="keyword">double</span></code>
      evaluation is used as a first approximation followed by Halley refinement,
      using a single step where it can be predicted that this will be sufficient,
      and only using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
      iteration when necessary. Higher precision types are always going to be <span class="bold"><strong>very, very much slower</strong></span>.
    </p>
<p>
      The 'best' evaluation (the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>)
      can be achieved by <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
      from a higher precision type, typically a <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>,
      but at the cost of increasing run-time 100-fold; this has been used here to
      provide some of our reference values for testing.
    </p>
<p>
      For example, we get a reference value using a high precision type, for example;
    </p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span>
</pre>
<p>
      that uses Halley iteration to refine until it is as precise as possible for
      this <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code> type.
    </p>
<p>
      As a further check we can compare this with a <a href="http://www.wolframalpha.com/" target="_top">Wolfram
      Alpha</a> computation using command <code class="literal">N[ProductLog[10.], 50]</code>
      to get 50 decimal digits and similarly <code class="literal">N[ProductLog[10.], 17]</code>
      to get the nearest representable for 64-bit <code class="computeroutput"><span class="keyword">double</span></code>
      precision.
    </p>
<pre class="programlisting"> <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">multiprecision</span><span class="special">::</span><span class="identifier">cpp_bin_float_50</span><span class="special">;</span>
 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">float_distance</span><span class="special">;</span>

 <span class="identifier">cpp_bin_float_50</span> <span class="identifier">z</span><span class="special">(</span><span class="string">"10."</span><span class="special">);</span> <span class="comment">// Note use a decimal digit string, not a double 10.</span>
 <span class="identifier">cpp_bin_float_50</span> <span class="identifier">r</span><span class="special">;</span>
 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_50</span><span class="special">&gt;::</span><span class="identifier">digits10</span><span class="special">);</span>

 <span class="identifier">r</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span> <span class="comment">// Default policy.</span>
 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(z) cpp_bin_float_50  = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">r</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
 <span class="comment">//lambert_w0(z) cpp_bin_float_50  = 1.7455280027406993830743012648753899115352881290809</span>
 <span class="comment">//       [N[productlog[10], 50]] == 1.7455280027406993830743012648753899115352881290809</span>
 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
 <span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"lambert_w0(z) static_cast from cpp_bin_float_50  = "</span>
   <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">r</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
 <span class="comment">// double lambert_w0(z) static_cast from cpp_bin_float_50  = 1.7455280027406994</span>
 <span class="comment">// [N[productlog[10], 17]]                                == 1.7455280027406994</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"bits different from Wolfram = "</span>
  <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">r</span><span class="special">),</span> <span class="number">1.7455280027406994</span><span class="special">))</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// 0</span>
</pre>
<p>
      giving us the same nearest representable using 64-bit <code class="computeroutput"><span class="keyword">double</span></code>
      as <code class="computeroutput"><span class="number">1.7455280027406994</span></code>.
    </p>
<p>
      However, the rational polynomial and Fukushima Schroder approximations are
      so good for type <code class="computeroutput"><span class="keyword">float</span></code> and <code class="computeroutput"><span class="keyword">double</span></code> that negligible improvement is gained
      from a <code class="computeroutput"><span class="keyword">double</span></code> Halley step.
    </p>
<p>
      This is shown with <a href="../../../example/lambert_w_precision_example.cpp" target="_top">lambert_w_precision_example.cpp</a>
      for Lambert <span class="emphasis"><em>W</em></span><sub>0</sub>:
    </p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w_detail</span><span class="special">::</span><span class="identifier">lambert_w_halley_step</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">epsilon_difference</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">relative_difference</span><span class="special">;</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// and show any significant trailing zeros too.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>

<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z50</span><span class="special">(</span><span class="string">"1.23"</span><span class="special">);</span> <span class="comment">// Note: use a decimal digit string, not a double 1.23!</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">w50</span><span class="special">;</span>
<span class="identifier">w50</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_50</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 50 decimal digits.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =\n                                              "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">w50</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
<span class="keyword">double</span> <span class="identifier">wr</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">w50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">wr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

<span class="keyword">double</span> <span class="identifier">w</span> <span class="special">=</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Rat/poly Lambert W  ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">")  =   "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Add a Halley step to the value obtained from rational polynomial approximation.</span>
<span class="keyword">double</span> <span class="identifier">ww</span> <span class="special">=</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Halley Step Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =  "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"absolute difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">w</span> <span class="special">-</span> <span class="identifier">ww</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"relative difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">relative_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon difference from Halley step  = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">epsilon_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon for float =                    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"bits different from Halley step  =     "</span> <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
      with this output:
    </p>
<pre class="programlisting"><span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2299999999999999822364316059974953532218933105468750</span><span class="special">)</span> <span class="special">=</span>
<span class="number">0.64520356959320237759035605255334853830173300262666480</span>
<span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span>    <span class="number">0.64520356959320235</span>
<span class="identifier">Rat</span><span class="special">/</span><span class="identifier">poly</span> <span class="identifier">Lambert</span> <span class="identifier">W</span>  <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span>  <span class="special">=</span>   <span class="number">0.64520356959320224</span>
<span class="identifier">Halley</span> <span class="identifier">Step</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(</span><span class="number">1.2300000000000000</span><span class="special">)</span> <span class="special">=</span>  <span class="number">0.64520356959320235</span>
<span class="identifier">absolute</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="special">-</span><span class="number">1.1102230246251565e-16</span>
<span class="identifier">relative</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.7207329236029286e-16</span>
<span class="identifier">epsilon</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span> <span class="number">0.77494921535422934</span>
<span class="identifier">epsilon</span> <span class="keyword">for</span> <span class="keyword">float</span> <span class="special">=</span>                    <span class="number">2.2204460492503131e-16</span>
<span class="identifier">bits</span> <span class="identifier">different</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span>     <span class="number">1</span>
</pre>
<p>
      and then for <span class="emphasis"><em>W</em></span><sub>-1</sub>:
    </p>
<pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">lambert_w_detail</span><span class="special">::</span><span class="identifier">lambert_w_halley_step</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">epsilon_difference</span><span class="special">;</span>
<span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">relative_difference</span><span class="special">;</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">showpoint</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span> <span class="comment">// and show any significant trailing zeros too.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>

<span class="identifier">cpp_bin_float_50</span> <span class="identifier">z50</span><span class="special">(</span><span class="string">"-0.123"</span><span class="special">);</span> <span class="comment">// Note: use a decimal digit string, not a double -1.234!</span>
<span class="keyword">double</span> <span class="identifier">z</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">cpp_bin_float_50</span> <span class="identifier">wm1_50</span><span class="special">;</span>
<span class="identifier">wm1_50</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_50</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 50 decimal digits.</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W-1 ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =\n                                                  "</span>
  <span class="special">&lt;&lt;</span> <span class="identifier">wm1_50</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span> <span class="comment">// 17 decimal digits for double.</span>
<span class="keyword">double</span> <span class="identifier">wr</span> <span class="special">=</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;(</span><span class="identifier">wm1_50</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Reference Lambert W-1 ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">wr</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

<span class="keyword">double</span> <span class="identifier">w</span> <span class="special">=</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Rat/poly Lambert W-1 ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">")  =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="comment">// Add a Halley step to the value obtained from rational polynomial approximation.</span>
<span class="keyword">double</span> <span class="identifier">ww</span> <span class="special">=</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">);</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"Halley Step Lambert W ("</span> <span class="special">&lt;&lt;</span> <span class="identifier">z</span> <span class="special">&lt;&lt;</span> <span class="string">") =    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">lambert_w_halley_step</span><span class="special">(</span><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="identifier">z</span><span class="special">),</span> <span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>

<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"absolute difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">w</span> <span class="special">-</span> <span class="identifier">ww</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"relative difference from Halley step = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">relative_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon difference from Halley step  = "</span> <span class="special">&lt;&lt;</span> <span class="identifier">epsilon_difference</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">)</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"epsilon for float =                    "</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">epsilon</span><span class="special">()</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
<span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span> <span class="special">&lt;&lt;</span> <span class="string">"bits different from Halley step  =     "</span> <span class="special">&lt;&lt;</span> <span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">int</span><span class="special">&gt;(</span><span class="identifier">float_distance</span><span class="special">(</span><span class="identifier">w</span><span class="special">,</span> <span class="identifier">ww</span><span class="special">))</span> <span class="special">&lt;&lt;</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">endl</span><span class="special">;</span>
</pre>
<p>
      with this output:
    </p>
<pre class="programlisting"><span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12299999999999999822364316059974953532218933105468750</span><span class="special">)</span> <span class="special">=</span>
<span class="special">-</span><span class="number">3.2849102557740360179084675531714935199110302996513384</span>
<span class="identifier">Reference</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span>    <span class="special">-</span><span class="number">3.2849102557740362</span>
<span class="identifier">Rat</span><span class="special">/</span><span class="identifier">poly</span> <span class="identifier">Lambert</span> <span class="identifier">W</span><span class="special">-</span><span class="number">1</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span>  <span class="special">=</span>    <span class="special">-</span><span class="number">3.2849102557740357</span>
<span class="identifier">Halley</span> <span class="identifier">Step</span> <span class="identifier">Lambert</span> <span class="identifier">W</span> <span class="special">(-</span><span class="number">0.12300000000000000</span><span class="special">)</span> <span class="special">=</span>    <span class="special">-</span><span class="number">3.2849102557740362</span>
<span class="identifier">absolute</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">4.4408920985006262e-16</span>
<span class="identifier">relative</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span> <span class="special">=</span> <span class="number">1.3519066740696092e-16</span>
<span class="identifier">epsilon</span> <span class="identifier">difference</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span> <span class="number">0.60884463935795785</span>
<span class="identifier">epsilon</span> <span class="keyword">for</span> <span class="keyword">float</span> <span class="special">=</span>                    <span class="number">2.2204460492503131e-16</span>
<span class="identifier">bits</span> <span class="identifier">different</span> <span class="identifier">from</span> <span class="identifier">Halley</span> <span class="identifier">step</span>  <span class="special">=</span>     <span class="special">-</span><span class="number">1</span>
</pre>
<h6>
<a name="math_toolkit.lambert_w.h9"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.differences_distribution"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.differences_distribution">Distribution
      of differences from 'best' <code class="computeroutput"><span class="keyword">double</span></code>
      evaluations</a>
    </h6>
<p>
      The distribution of differences from 'best' are shown in these graphs comparing
      <code class="computeroutput"><span class="keyword">double</span></code> precision evaluations with
      reference 'best' z50 evaluations using <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
      type reduced to <code class="computeroutput"><span class="keyword">double</span></code> with <code class="computeroutput"><span class="keyword">static_cast</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">(</span><span class="identifier">z50</span><span class="special">)</span></code> :
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_w0_errors_graph.svg" align="middle"></span>

      </p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_errors_graph.svg" align="middle"></span>

      </p></blockquote></div>
<p>
      As noted in the implementation section, the distribution of these differences
      is somewhat biased for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> and this might be reduced
      using a <code class="computeroutput"><span class="keyword">double</span></code> Halley step at
      small runtime cost. But if you are seriously concerned to get really precise
      computations, the only way is using a higher precision type and then reduce
      to the desired type. Fortunately, <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      makes this very easy to program, if much slower.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h10"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.edge_cases"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.edge_cases">Edge
      and Corner cases</a>
    </h5>
<h6>
<a name="math_toolkit.lambert_w.h11"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.w0_edges"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.w0_edges">The
      <span class="emphasis"><em>W</em></span><sub>0</sub> Branch</a>
    </h6>
<p>
      The domain of <span class="emphasis"><em>W</em></span><sub>0</sub> is [-<span class="emphasis"><em>e</em></span><sup>-1</sup>, ∞). Numerically,
    </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span><span class="special">)</span></code> is exactly -1.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span></code> for
          <code class="computeroutput"><span class="identifier">z</span> <span class="special">&lt;</span>
          <span class="special">-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span></code> throws
          a <code class="computeroutput"><span class="identifier">domain_error</span></code>, or returns
          <code class="computeroutput"><span class="identifier">NaN</span></code> according to the policy.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lambert_w0</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">infinity</span><span class="special">())</span></code>
          throws an <code class="computeroutput"><span class="identifier">overflow_error</span></code>.
        </li>
</ul></div>
<p>
      (An infinite argument probably indicates that something has already gone wrong,
      but if it is desired to return infinity, this case should be handled before
      calling <code class="computeroutput"><span class="identifier">lambert_w0</span></code>).
    </p>
<h6>
<a name="math_toolkit.lambert_w.h12"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.wm1_edges"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_edges"><span class="emphasis"><em>W</em></span><sub>-1</sub> Branch</a>
    </h6>
<p>
      The domain of <span class="emphasis"><em>W</em></span><sub>-1</sub> is [-<span class="emphasis"><em>e</em></span><sup>-1</sup>, 0). Numerically,
    </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span><span class="special">)</span></code> is exactly -1.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(</span><span class="number">0</span><span class="special">)</span></code> returns
          -∞ (or the nearest equivalent if <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">has_infinity</span>
          <span class="special">==</span> <span class="keyword">false</span></code>).
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">min</span><span class="special">())</span></code>
          returns the maximum (most negative) possible value of Lambert <span class="emphasis"><em>W</em></span>
          for the type T. <br> For example, for <code class="computeroutput"><span class="keyword">double</span></code>:
          lambert_wm1(-2.2250738585072014e-308) = -714.96865723796634 <br> and
          for <code class="computeroutput"><span class="keyword">float</span></code>: lambert_wm1(-1.17549435e-38)
          = -91.8567734 <br>
        </li>
<li class="listitem">
<p class="simpara">
          <code class="computeroutput"><span class="identifier">z</span> <span class="special">&lt;</span>
          <span class="special">-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">min</span><span class="special">()</span></code>, means that z is zero or denormalized
          (if <code class="computeroutput"><span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">detail</span><span class="special">::</span><span class="identifier">has_denorm_now</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;()</span> <span class="special">==</span> <span class="keyword">true</span></code>),
          for example: <code class="computeroutput"><span class="identifier">r</span> <span class="special">=</span>
          <span class="identifier">lambert_wm1</span><span class="special">(-</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;::</span><span class="identifier">denorm_min</span><span class="special">());</span></code>
          and an overflow_error exception is thrown, and will give a message like:
        </p>
<p class="simpara">
          Error in function boost::math::lambert_wm1&lt;RealType&gt;(&lt;RealType&gt;):
          Argument z = -4.9406564584124654e-324 is too small (z &lt; -std::numeric_limits&lt;T&gt;::min
          so denormalized) for Lambert W-1 branch!
        </p>
</li>
</ul></div>
<p>
      Denormalized values are not supported for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> (because
      not all floating-point types denormalize), and anyway it only covers a tiny
      fraction of the range of possible z arguments values.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h13"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.compilers"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.compilers">Compilers</a>
    </h5>
<p>
      The <code class="computeroutput"><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span></code> code has been shown to work on most C++98
      compilers. (Apart from requiring C++11 extensions for using of <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;&gt;::</span><span class="identifier">max_digits10</span></code>
      in some diagnostics. Many old pre-c++11 compilers provide this extension but
      may require enabling to use, for example using b2/bjam the lambert_w examples
      use this command:
    </p>
<pre class="programlisting"><span class="special">[</span> <span class="identifier">run</span> <span class="identifier">lambert_w_basic_example</span><span class="special">.</span><span class="identifier">cpp</span>  <span class="special">:</span> <span class="special">:</span> <span class="special">:</span> <span class="special">[</span> <span class="identifier">requires</span> <span class="identifier">cxx11_numeric_limits</span> <span class="special">]</span> <span class="special">]</span>
</pre>
<p>
      See <a href="../../../example/Jamfile.v2" target="_top">jamfile.v2</a>.)
    </p>
<p>
      For details of which compilers are expected to work see lambert_w tests and
      examples in:<br> <a href="https://www.boost.org/development/tests/master/developer/math.html" target="_top">Boost
      Test Summary report for master branch (used for latest release)</a><br>
      <a href="https://www.boost.org/development/tests/develop/developer/math.html" target="_top">Boost
      Test Summary report for latest developer branch</a>.
    </p>
<p>
      As expected, debug mode is very much slower than release.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h14"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.diagnostics"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.diagnostics">Diagnostics
      Macros</a>
    </h6>
<p>
      Several macros are provided to output diagnostic information (potentially
      <span class="bold"><strong>much</strong></span> output). These can be statements, for
      example:
    </p>
<p>
      <code class="computeroutput"><span class="preprocessor">#define</span> <span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>
    </p>
<p>
      placed <span class="bold"><strong>before</strong></span> the <code class="computeroutput"><span class="identifier">lambert_w</span></code>
      include statement
    </p>
<p>
      <code class="computeroutput"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">lambert_w</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span></code>,
    </p>
<p>
      or defined on the project compile command-line: <code class="computeroutput"><span class="special">/</span><span class="identifier">DBOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>,
    </p>
<p>
      or defined in a jamfile.v2: <code class="computeroutput"><span class="special">&lt;</span><span class="identifier">define</span><span class="special">&gt;</span><span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span></code>
    </p>
<pre class="programlisting"><span class="comment">// #define-able macros</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_HALLEY</span>                     <span class="comment">// Halley refinement diagnostics.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_PRECISION</span>                  <span class="comment">// Precision.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1</span>                          <span class="comment">// W1 branch diagnostics.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_HALLEY</span>                   <span class="comment">// Halley refinement diagnostics only for W-1 branch.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_TINY</span>                     <span class="comment">// K &gt; 64, z &gt; -1.0264389699511303e-26</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_WM1_LOOKUP</span>                   <span class="comment">// Show results from W-1 lookup table.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SCHROEDER</span>                  <span class="comment">// Schroeder refinement diagnostics.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_TERMS</span>                      <span class="comment">// Number of terms used for near-singularity series.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SINGULARITY_SERIES</span>         <span class="comment">// Show evaluation of series near branch singularity.</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES</span>
<span class="identifier">BOOST_MATH_INSTRUMENT_LAMBERT_W_SMALL_Z_SERIES_ITERATIONS</span>  <span class="comment">// Show evaluation of series for small z.</span>
</pre>
<h5>
<a name="math_toolkit.lambert_w.h15"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementation">Implementation</a>
    </h5>
<p>
      There are many previous implementations, each with increasing accuracy and/or
      speed. See <a class="link" href="lambert_w.html#math_toolkit.lambert_w.references">references</a>
      below.
    </p>
<p>
      For most of the range of <span class="emphasis"><em>z</em></span> arguments, some initial approximation
      followed by a single refinement, often using Halley or similar method, gives
      a useful precision. For speed, several implementations avoid evaluation of
      a iteration test using the exponential function, estimating that a single refinement
      step will suffice, but these rarely get to the best result possible. To get
      a better precision, additional refinements, probably iterative, are needed
      for example, using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
      or <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.schroder">Schröder</a> methods.
    </p>
<p>
      For C++, the most precise results possible, closest to the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
      for the C++ type being used, it is usually necessary to use a higher precision
      type for intermediate computation, finally static-casting back to the smaller
      desired result type. This strategy is used by <a href="https://www.maplesoft.com" target="_top">Maple</a>
      and <a href="http://www.wolframalpha.com/" target="_top">Wolfram Alpha</a>, for example,
      using arbitrary precision arithmetic, and some of their high-precision values
      are used for testing this library. This method is also used to provide some
      <a href="https://www.boost.org/doc/libs/release/libs/test/doc/html/index.html" target="_top">Boost.Test</a>
      values using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
      typically, a 50 decimal digit type like <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>
      <code class="computeroutput"><span class="keyword">static_cast</span></code> to a <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>
      or <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
      type.
    </p>
<p>
      For <span class="emphasis"><em>z</em></span> argument values near the singularity and near zero,
      other approximations may be used, possibly followed by refinement or increasing
      number of series terms until a desired precision is achieved. At extreme arguments
      near to zero or the singularity at the branch point, even this fails and the
      only method to achieve a really close result is to cast from a higher precision
      type.
    </p>
<p>
      In practical applications, the increased computation required (often towards
      a thousand-fold slower and requiring much additional code for <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>)
      is not justified and the algorithms here do not implement this. But because
      the Boost.Lambert_W algorithms has been tested using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
      users who require this can always easily achieve the nearest representation
      for <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
      (built-in) types</a> - if the application justifies the very large extra
      computation cost.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h16"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.evolution_of_this_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.evolution_of_this_implementation">Evolution
      of this implementation</a>
    </h6>
<p>
      One compact real-only implementation was based on an algorithm by <a href="http://discovery.ucl.ac.uk/1482128/1/Luu_thesis.pdf" target="_top">Thomas
      Luu, Thesis, University College London (2015)</a>, (see routine 11 on page
      98 for his Lambert W algorithm) and his Halley refinement is used iteratively
      when required. A first implementation was based on Thomas Luu's code posted
      at <a href="https://svn.boost.org/trac/boost/ticket/11027" target="_top">Boost Trac #11027</a>.
      It has been implemented from Luu's algorithm but templated on <code class="computeroutput"><span class="identifier">RealType</span></code> parameter and result and handles
      both <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
      (built-in) types</a> (<code class="computeroutput"><span class="keyword">float</span><span class="special">,</span> <span class="keyword">double</span><span class="special">,</span>
      <span class="keyword">long</span> <span class="keyword">double</span></code>),
      <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>,
      and also has been tested successfully with a proposed fixed_point type.
    </p>
<p>
      A first approximation was computed using the method of Barry et al (see references
      5 &amp; 6 below). This was extended to the widely used <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms443/toms443.html" target="_top">TOMS443</a>
      FORTRAN and C++ versions by John Burkardt using Schroeder refinement(s). (For
      users only requiring an accuracy of relative accuracy of 0.02%, Barry's function
      alone might suffice, but a better <a href="https://en.wikipedia.org/wiki/Rational_function" target="_top">rational
      function</a> approximation method has since been developed for this implementation).
    </p>
<p>
      We also considered using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.newton">Newton-Raphson
      iteration</a> method.
    </p>
<pre class="programlisting"><span class="identifier">f</span><span class="special">(</span><span class="identifier">w</span><span class="special">)</span> <span class="special">=</span> <span class="identifier">w</span> <span class="identifier">e</span><span class="special">^</span><span class="identifier">w</span> <span class="special">-</span><span class="identifier">z</span> <span class="special">=</span> <span class="number">0</span> <span class="comment">// Luu equation 6.37</span>
<span class="identifier">f</span><span class="char">'(w) = e^w (1 + w), Wolfram alpha (d)/(dw)(f(w) = w exp(w) - z) = e^w (w + 1)
if (f(w) / f'</span><span class="special">(</span><span class="identifier">w</span><span class="special">)</span> <span class="special">-</span><span class="number">1</span> <span class="special">&lt;</span> <span class="identifier">tolerance</span>
<span class="identifier">w1</span> <span class="special">=</span> <span class="identifier">w0</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">expw0</span> <span class="special">*</span> <span class="special">(</span><span class="identifier">w0</span> <span class="special">+</span> <span class="number">1</span><span class="special">));</span> <span class="comment">// Refine new Newton/Raphson estimate.</span>
</pre>
<p>
      but concluded that since the Newton-Raphson method takes typically 6 iterations
      to converge within tolerance, whereas Halley usually takes only 1 to 3 iterations
      to achieve an result within 1 <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
      in the last place (ULP)</a>, so the Newton-Raphson method is unlikely to
      be quicker than the additional cost of computing the 2nd derivative for Halley's
      method.
    </p>
<p>
      Halley refinement uses the simplified formulae obtained from <a href="http://www.wolframalpha.com/input/?i=%5B2(z+exp(z)-w)+d%2Fdx+(z+exp(z)-w)%5D+%2F+%5B2+(d%2Fdx+(z+exp(z)-w))%5E2+-+(z+exp(z)-w)+d%5E2%2Fdx%5E2+(z+exp(z)-w)%5D" target="_top">Wolfram
      Alpha</a>
    </p>
<pre class="programlisting"><span class="special">[</span><span class="number">2</span><span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)</span> <span class="identifier">d</span><span class="special">/</span><span class="identifier">dx</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)]</span> <span class="special">/</span> <span class="special">[</span><span class="number">2</span> <span class="special">(</span><span class="identifier">d</span><span class="special">/</span><span class="identifier">dx</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">))^</span><span class="number">2</span> <span class="special">-</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)</span> <span class="identifier">d</span><span class="special">^</span><span class="number">2</span><span class="special">/</span><span class="identifier">dx</span><span class="special">^</span><span class="number">2</span> <span class="special">(</span><span class="identifier">z</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">z</span><span class="special">)-</span><span class="identifier">w</span><span class="special">)]</span>
</pre>
<h5>
<a name="math_toolkit.lambert_w.h17"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.compact_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.compact_implementation">Implementing
      Compact Algorithms</a>
    </h5>
<p>
      The most compact algorithm can probably be implemented using the log approximation
      of Corless et al. followed by Halley iteration (but is also slowest and least
      precise near zero and near the branch singularity).
    </p>
<h5>
<a name="math_toolkit.lambert_w.h18"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.faster_implementation"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.faster_implementation">Implementing
      Faster Algorithms</a>
    </h5>
<p>
      More recently, the Tosio Fukushima has developed an even faster algorithm,
      avoiding any transcendental function calls as these are necessarily expensive.
      The current implementation of Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> is based on his
      algorithm starting with a translation from Fukushima's FORTRAN into C++ by
      Darko Veberic.
    </p>
<p>
      Many applications of the Lambert W function make many repeated evaluations
      for Monte Carlo methods; for these applications speed is very important. Luu,
      and Chapeau-Blondeau and Monir provide typical usage examples.
    </p>
<p>
      Fukushima improves the important observation that much of the execution time
      of all previous iterative algorithms was spent evaluating transcendental functions,
      usually <code class="computeroutput"><span class="identifier">exp</span></code>. He has put a lot
      of work into avoiding any slow transcendental functions by using lookup tables
      and bisection, finishing with a single Schroeder refinement, without any check
      on the final precision of the result (necessarily evaluating an expensive exponential).
    </p>
<p>
      Theoretical and practical tests confirm that Fukushima's algorithm gives Lambert
      W estimates with a known small error bound (several <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
      in the last place (ULP)</a>) over nearly all the range of <span class="emphasis"><em>z</em></span>
      argument.
    </p>
<p>
      A mean difference was computed to express the typical error and is often about
      0.5 epsilon, the theoretical minimum. Using the <a href="../../../../../libs/math/doc/html/math_toolkit/next_float/float_distance.html" target="_top">Boost.Math
      float_distance</a>, we can also express this as the number of bits that
      are different from the nearest representable or 'exact' or 'best' value. The
      number and distribution of these few bits differences was studied by binning,
      including their sign. Bins for (signed) 0, 1, 2 and 3 and 4 bits proved suitable.
    </p>
<p>
      However, though these give results within a few <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
      epsilon</a> of the nearest representable result, they do not get as close
      as is very often possible with further refinement, nearly always to within
      one or two <a href="http://en.wikipedia.org/wiki/Machine_epsilon" target="_top">machine
      epsilon</a>.
    </p>
<p>
      More significantly, the evaluations of the sum of all signed differences using
      the Fukshima algorithm show a slight bias, being more likely to be a bit or
      few below the nearest representation than above; bias might have unwanted effects
      on some statistical computations.
    </p>
<p>
      Fukushima's method also does not cover the full range of z arguments of 'float'
      precision and above.
    </p>
<p>
      For this implementation of Lambert <span class="emphasis"><em>W</em></span><sub>0</sub>, John Maddock used
      the Boost.Math <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
      algorithm</a> method program to devise a <a href="https://en.wikipedia.org/wiki/Rational_function" target="_top">rational
      function</a> for several ranges of argument for the <span class="emphasis"><em>W</em></span><sub>0</sub> branch
      of Lambert <span class="emphasis"><em>W</em></span> function. These minimax rational approximations
      are combined for an algorithm that is both smaller and faster.
    </p>
<p>
      Sadly it has not proved practical to use the same <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
      algorithm</a> method for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch and so
      the Fukushima algorithm is retained for this branch.
    </p>
<p>
      An advantage of both minimax rational <a href="http://en.wikipedia.org/wiki/Remez_algorithm" target="_top">Remez
      algorithm</a> approximations is that the <span class="bold"><strong>distribution</strong></span>
      from the reference values is reasonably random and insignificantly biased.
    </p>
<p>
      For example, table below a test of Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> 10000 values
      of argument covering the main range of possible values, 10000 comparisons from
      z = 0.0501 to 703, in 0.001 step factor 1.05 when module 7 == 0
    </p>
<div class="table">
<a name="math_toolkit.lambert_w.lambert_w0_Fukushima"></a><p class="title"><b>Table 8.73. Fukushima Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> and typical improvement from
      a single Halley step.</b></p>
<div class="table-contents"><table class="table" summary="Fukushima Lambert W0 and typical improvement from
      a single Halley step.">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              <p>
                Method
              </p>
            </th>
<th>
              <p>
                Exact
              </p>
            </th>
<th>
              <p>
                One_bit
              </p>
            </th>
<th>
              <p>
                Two_bits
              </p>
            </th>
<th>
              <p>
                Few_bits
              </p>
            </th>
<th>
              <p>
                inexact
              </p>
            </th>
<th>
              <p>
                bias
              </p>
            </th>
</tr></thead>
<tbody>
<tr>
<td>
              <p>
                Schroeder <span class="emphasis"><em>W</em></span><sub>0</sub>
              </p>
            </td>
<td>
              <p>
                8804
              </p>
            </td>
<td>
              <p>
                1154
              </p>
            </td>
<td>
              <p>
                37
              </p>
            </td>
<td>
              <p>
                5
              </p>
            </td>
<td>
              <p>
                1243
              </p>
            </td>
<td>
              <p>
                -1193
              </p>
            </td>
</tr>
<tr>
<td>
              <p>
                after Halley step
              </p>
            </td>
<td>
              <p>
                9710
              </p>
            </td>
<td>
              <p>
                288
              </p>
            </td>
<td>
              <p>
                2
              </p>
            </td>
<td>
              <p>
                0
              </p>
            </td>
<td>
              <p>
                292
              </p>
            </td>
<td>
              <p>
                22
              </p>
            </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
      Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> values computed using the Fukushima method with
      Schroeder refinement gave about 1/6 <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
      values that are one bit different from the 'best', and &lt; 1% that are a few
      bits 'wrong'. If a Halley refinement step is added, only 1 in 30 are even one
      bit different, and only 2 two-bits 'wrong'.
    </p>
<div class="table">
<a name="math_toolkit.lambert_w.lambert_w0_plus_halley"></a><p class="title"><b>Table 8.74. Rational polynomial Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> and typical improvement
      from a single Halley step.</b></p>
<div class="table-contents"><table class="table" summary="Rational polynomial Lambert W0 and typical improvement
      from a single Halley step.">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              <p>
                Method
              </p>
            </th>
<th>
              <p>
                Exact
              </p>
            </th>
<th>
              <p>
                One_bit
              </p>
            </th>
<th>
              <p>
                Two_bits
              </p>
            </th>
<th>
              <p>
                Few_bits
              </p>
            </th>
<th>
              <p>
                inexact
              </p>
            </th>
<th>
              <p>
                bias
              </p>
            </th>
</tr></thead>
<tbody>
<tr>
<td>
              <p>
                rational/polynomial
              </p>
            </td>
<td>
              <p>
                7135
              </p>
            </td>
<td>
              <p>
                2863
              </p>
            </td>
<td>
              <p>
                2
              </p>
            </td>
<td>
              <p>
                0
              </p>
            </td>
<td>
              <p>
                2867
              </p>
            </td>
<td>
              <p>
                -59
              </p>
            </td>
</tr>
<tr>
<td>
              <p>
                after Halley step
              </p>
            </td>
<td>
              <p>
                9724
              </p>
            </td>
<td>
              <p>
                273
              </p>
            </td>
<td>
              <p>
                3
              </p>
            </td>
<td>
              <p>
                0
              </p>
            </td>
<td>
              <p>
                279
              </p>
            </td>
<td>
              <p>
                5
              </p>
            </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
      With the rational polynomial approximation method, there are a third one-bit
      from the best and none more than two-bits. Adding a Halley step (or iteration)
      reduces the number that are one-bit different from about a third down to one
      in 30; this is unavoidable 'computational noise'. An extra Halley step would
      double the runtime for a tiny gain and so is not chosen for this implementation,
      but remains a option, as detailed above.
    </p>
<p>
      For the Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch, the Fukushima algorithm is
      used.
    </p>
<div class="table">
<a name="math_toolkit.lambert_w.lambert_wm1_fukushima"></a><p class="title"><b>Table 8.75. Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> using Fukushima algorithm.</b></p>
<div class="table-contents"><table class="table" summary="Lambert W-1 using Fukushima algorithm.">
<colgroup>
<col>
<col>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              <p>
                Method
              </p>
            </th>
<th>
              <p>
                Exact
              </p>
            </th>
<th>
              <p>
                One_bit
              </p>
            </th>
<th>
              <p>
                Two_bits
              </p>
            </th>
<th>
              <p>
                Few_bits
              </p>
            </th>
<th>
              <p>
                inexact
              </p>
            </th>
<th>
              <p>
                bias
              </p>
            </th>
</tr></thead>
<tbody>
<tr>
<td>
              <p>
                Fukushima <span class="emphasis"><em>W</em></span><sub>-1</sub>
              </p>
            </td>
<td>
              <p>
                7167
              </p>
            </td>
<td>
              <p>
                2704
              </p>
            </td>
<td>
              <p>
                129
              </p>
            </td>
<td>
              <p>
                0
              </p>
            </td>
<td>
              <p>
                2962
              </p>
            </td>
<td>
              <p>
                -160
              </p>
            </td>
</tr>
<tr>
<td>
              <p>
                plus Halley step
              </p>
            </td>
<td>
              <p>
                7379
              </p>
            </td>
<td>
              <p>
                2529
              </p>
            </td>
<td>
              <p>
                92
              </p>
            </td>
<td>
              <p>
                0
              </p>
            </td>
<td>
              <p>
                2713
              </p>
            </td>
<td>
              <p>
                549
              </p>
            </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><h6>
<a name="math_toolkit.lambert_w.h19"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.lookup_tables"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.lookup_tables">Lookup
      tables</a>
    </h6>
<p>
      For speed during the bisection, Fukushima's algorithm computes lookup tables
      of powers of e and z for integral Lambert W. There are 64 elements in these
      tables. The FORTRAN version (and the C++ translation by Veberic) computed these
      (once) as <code class="computeroutput"><span class="keyword">static</span></code> data. This is
      slower, may cause trouble with multithreading, and is slightly inaccurate because
      of rounding errors from repeated(64) multiplications.
    </p>
<p>
      In this implementation the array values have been computed using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      50 decimal digit and output as C++ arrays 37 decimal digit <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code> literals using <code class="computeroutput"><span class="identifier">max_digits10</span></code> precision
    </p>
<pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">cout</span><span class="special">.</span><span class="identifier">precision</span><span class="special">(</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">cpp_bin_float_quad</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span><span class="special">);</span>
</pre>
<p>
      The arrays are as <code class="computeroutput"><span class="keyword">const</span></code> and <code class="computeroutput"><span class="keyword">constexpr</span></code> and <code class="computeroutput"><span class="keyword">static</span></code>
      as possible (for the compiler version), using static constexpr macro. (See
      <a href="../../../tools/lambert_w_lookup_table_generator.cpp" target="_top">lambert_w_lookup_table_generator.cpp</a>
      The precision was chosen to ensure that if used as <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code> arrays, then the values output
      to <a href="../../../include/boost/math/special_functions/detail/lambert_w_lookup_table.ipp" target="_top">lambert_w_lookup_table.ipp</a>
      will be the nearest representable value for the type chose by a <code class="computeroutput"><span class="keyword">typedef</span></code> in <a href="../../../include/boost/math/special_functions/lambert_w.hpp" target="_top">lambert_w.hpp</a>.
    </p>
<pre class="programlisting"><span class="keyword">typedef</span> <span class="keyword">double</span> <span class="identifier">lookup_t</span><span class="special">;</span> <span class="comment">// Type for lookup table (`double` or `float`, or even `long double`?)</span>
</pre>
<p>
      This is to allow for future use at higher precision, up to platforms that use
      128-bit (hardware or software) for their <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code> type.
    </p>
<p>
      The accuracy of the tables was confirmed using <a href="http://www.wolframalpha.com/" target="_top">Wolfram
      Alpha</a> and agrees at the 37th decimal place, so ensuring that the value
      is exactly read into even 128-bit <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code> to the nearest representation.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h20"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.higher_precision"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.higher_precision">Higher
      precision</a>
    </h6>
<p>
      For types more precise than <code class="computeroutput"><span class="keyword">double</span></code>,
      Fukushima reported that it was best to use the <code class="computeroutput"><span class="keyword">double</span></code>
      estimate as a starting point, followed by refinement using <a class="link" href="roots_deriv.html#math_toolkit.roots_deriv.halley">Halley</a>
      iterations or other methods; our experience confirms this.
    </p>
<p>
      Using <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      it is simple to compute very high precision values of Lambert W at least to
      thousands of decimal digits over most of the range of z arguments.
    </p>
<p>
      For this reason, the lookup tables and bisection are only carried out at low
      precision, usually <code class="computeroutput"><span class="keyword">double</span></code>, chosen
      by the <code class="computeroutput"><span class="keyword">typedef</span> <span class="keyword">double</span>
      <span class="identifier">lookup_t</span></code>. Unlike the FORTRAN version,
      the lookup tables of Lambert_W of integral values are precomputed as C++ static
      arrays of floating-point literals. The default is a <code class="computeroutput"><span class="keyword">typedef</span></code>
      setting the type to <code class="computeroutput"><span class="keyword">double</span></code>. To
      allow users to vary the precision from <code class="computeroutput"><span class="keyword">float</span></code>
      to <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
      these are computed to 128-bit precision to ensure that even platforms with
      <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
      do not lose precision.
    </p>
<p>
      The FORTRAN version and translation only permits the z argument to be the largest
      items in these lookup arrays, <code class="computeroutput"><span class="identifier">wm0s</span><span class="special">[</span><span class="number">64</span><span class="special">]</span>
      <span class="special">=</span> <span class="number">3.99049</span></code>,
      producing an error message and returning <code class="computeroutput"><span class="identifier">NaN</span></code>.
      So 64 is the largest possible value ever returned from the <code class="computeroutput"><span class="identifier">lambert_w0</span></code>
      function. This is far from the <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;&gt;::</span><span class="identifier">max</span><span class="special">()</span></code> for even <code class="computeroutput"><span class="keyword">float</span></code>s.
      Therefore this implementation uses an approximation or 'guess' and Halley's
      method to refine the result. Logarithmic approximation is discussed at length
      by R.M.Corless et al. (page 349). Here we use the first two terms of equation
      4.19:
    </p>
<pre class="programlisting"><span class="identifier">T</span> <span class="identifier">lz</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">z</span><span class="special">);</span>
<span class="identifier">T</span> <span class="identifier">llz</span> <span class="special">=</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">lz</span><span class="special">);</span>
<span class="identifier">guess</span> <span class="special">=</span> <span class="identifier">lz</span> <span class="special">-</span> <span class="identifier">llz</span> <span class="special">+</span> <span class="special">(</span><span class="identifier">llz</span> <span class="special">/</span> <span class="identifier">lz</span><span class="special">);</span>
</pre>
<p>
      This gives a useful precision suitable for Halley refinement.
    </p>
<p>
      Similarly, for Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> branch, tiny values very near
      zero, W &gt; 64 cannot be computed using the lookup table. For this region,
      an approximation followed by a few (usually 3) Halley refinements. See <a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_near_zero">wm1_near_zero</a>.
    </p>
<p>
      For the less well-behaved regions for Lambert <span class="emphasis"><em>W</em></span><sub>0</sub> <span class="emphasis"><em>z</em></span>
      arguments near zero, and near the branch singularity at <span class="emphasis"><em>-1/e</em></span>,
      some series functions are used.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h21"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.small_z"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.small_z">Small
      values of argument z near zero</a>
    </h6>
<p>
      When argument <span class="emphasis"><em>z</em></span> is small and near zero, there is an efficient
      and accurate series evaluation method available (implemented in <code class="computeroutput"><span class="identifier">lambert_w0_small_z</span></code>). There is no equivalent
      for the <span class="emphasis"><em>W</em></span><sub>-1</sub> branch as this only covers argument <code class="computeroutput"><span class="identifier">z</span> <span class="special">&lt;</span> <span class="special">-</span><span class="number">1</span><span class="special">/</span><span class="identifier">e</span></code>.
      The cutoff used <code class="computeroutput"><span class="identifier">abs</span><span class="special">(</span><span class="identifier">z</span><span class="special">)</span> <span class="special">&lt;</span>
      <span class="number">0.05</span></code> is as found by trial and error by
      Fukushima.
    </p>
<p>
      Coefficients of the inverted series expansion of the Lambert W function around
      <code class="computeroutput"><span class="identifier">z</span> <span class="special">=</span>
      <span class="number">0</span></code> are computed following Fukushima using
      17 terms of a Taylor series computed using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
      Mathematica</a> with
    </p>
<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">[</span><span class="identifier">Series</span><span class="special">[</span><span class="identifier">z</span> <span class="identifier">Exp</span><span class="special">[</span><span class="identifier">z</span><span class="special">],{</span><span class="identifier">z</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">17</span><span class="special">}]]</span>
</pre>
<p>
      See Tosio Fukushima, Journal of Computational and Applied Mathematics 244 (2013),
      page 86.
    </p>
<p>
      To provide higher precision constants (34 decimal digits) for types larger
      than <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>,
    </p>
<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">[</span><span class="identifier">Series</span><span class="special">[</span><span class="identifier">z</span> <span class="identifier">Exp</span><span class="special">[</span><span class="identifier">z</span><span class="special">],{</span><span class="identifier">z</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">34</span><span class="special">}]]</span>
</pre>
<p>
      were also computed, but for current hardware it was found that evaluating a
      <code class="computeroutput"><span class="keyword">double</span></code> precision and then refining
      with Halley's method was quicker and more accurate.
    </p>
<p>
      Decimal values of specifications for built-in floating-point types below are
      21 digits precision == <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code> for <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code>.
    </p>
<p>
      Specializations for <code class="computeroutput"><span class="identifier">lambert_w0_small_z</span></code>
      are provided for <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code>, <code class="computeroutput"><span class="identifier">float128</span></code>
      and for <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      types.
    </p>
<p>
      The <code class="computeroutput"><span class="identifier">tag_type</span></code> selection is based
      on the value <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;::</span><span class="identifier">max_digits10</span></code>
      (and <span class="bold"><strong>not</strong></span> on the floating-point type T). This
      distinguishes between <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
      types that commonly vary between 64 and 80-bits, and also compilers that have
      a <code class="computeroutput"><span class="keyword">float</span></code> type using 64 bits and/or
      <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
      using 128-bits.
    </p>
<p>
      As noted in the <a class="link" href="lambert_w.html#math_toolkit.lambert_w.implementation">implementation</a>
      section above, it is only possible to ensure the nearest representable value
      by casting from a higher precision type, computed at very, very much greater
      cost.
    </p>
<p>
      For multiprecision types, first several terms of the series are tabulated and
      evaluated as a polynomial: (this will save us a bunch of expensive calls to
      <code class="computeroutput"><span class="identifier">pow</span></code>). Then our series functor
      is initialized "as if" it had already reached term 18, enough evaluation
      of built-in 64-bit double and float (and 80-bit <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code>) types. Finally the functor is
      called repeatedly to compute as many additional series terms as necessary to
      achieve the desired precision, set from <code class="computeroutput"><span class="identifier">get_epsilon</span></code>
      (or terminated by <code class="computeroutput"><span class="identifier">evaluation_error</span></code>
      on reaching the set iteration limit <code class="computeroutput"><span class="identifier">max_series_iterations</span></code>).
    </p>
<p>
      A little more than one decimal digit of precision is gained by each additional
      series term. This allows computation of Lambert W near zero to at least 1000
      decimal digit precision, given sufficient compute time.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h22"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.near_singularity"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.near_singularity">Argument
      z near the singularity at -1/e between branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
      <span class="emphasis"><em>W</em></span><sub>-1</sub> </a>
    </h5>
<p>
      Variants of Function <code class="computeroutput"><span class="identifier">lambert_w_singularity_series</span></code>
      are used to handle <span class="emphasis"><em>z</em></span> arguments which are near to the singularity
      at <code class="computeroutput"><span class="identifier">z</span> <span class="special">=</span>
      <span class="special">-</span><span class="identifier">exp</span><span class="special">(-</span><span class="number">1</span><span class="special">)</span>
      <span class="special">=</span> <span class="special">-</span><span class="number">3.6787944</span></code> where the branches <span class="emphasis"><em>W</em></span><sub>0</sub> and
      <span class="emphasis"><em>W</em></span><sub>-1</sub> join.
    </p>
<p>
      T. Fukushima / Journal of Computational and Applied Mathematics 244 (2013)
      77-89 describes using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
      Mathematica</a>
    </p>
<pre class="programlisting"><span class="identifier">InverseSeries</span><span class="special">\[</span><span class="identifier">Series</span><span class="special">\[</span><span class="identifier">sqrt</span><span class="special">\[</span><span class="number">2</span><span class="special">(</span><span class="identifier">p</span> <span class="identifier">Exp</span><span class="special">\[</span><span class="number">1</span> <span class="special">+</span> <span class="identifier">p</span><span class="special">\]</span> <span class="special">+</span> <span class="number">1</span><span class="special">)\],</span> <span class="special">{</span><span class="identifier">p</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span> <span class="number">20</span><span class="special">}\]\]</span>
</pre>
<p>
      to provide his Table 3, page 85.
    </p>
<p>
      This implementation used <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
      Mathematica</a> to obtain 40 series terms at 50 decimal digit precision
    </p>
<pre class="programlisting"><span class="identifier">N</span><span class="special">\[</span><span class="identifier">InverseSeries</span><span class="special">\[</span><span class="identifier">Series</span><span class="special">\[</span><span class="identifier">Sqrt</span><span class="special">\[</span><span class="number">2</span><span class="special">(</span><span class="identifier">p</span> <span class="identifier">Exp</span><span class="special">\[</span><span class="number">1</span> <span class="special">+</span> <span class="identifier">p</span><span class="special">\]</span> <span class="special">+</span> <span class="number">1</span><span class="special">)\],</span> <span class="special">{</span> <span class="identifier">p</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span><span class="number">40</span> <span class="special">}\]\],</span> <span class="number">50</span><span class="special">\]</span>

<span class="special">-</span><span class="number">1</span><span class="special">+</span><span class="identifier">p</span><span class="special">-</span><span class="identifier">p</span><span class="special">^</span><span class="number">2</span><span class="special">/</span><span class="number">3</span><span class="special">+(</span><span class="number">11</span> <span class="identifier">p</span><span class="special">^</span><span class="number">3</span><span class="special">)/</span><span class="number">72</span><span class="special">-(</span><span class="number">43</span> <span class="identifier">p</span><span class="special">^</span><span class="number">4</span><span class="special">)/</span><span class="number">540</span><span class="special">+(</span><span class="number">769</span> <span class="identifier">p</span><span class="special">^</span><span class="number">5</span><span class="special">)/</span><span class="number">17280</span><span class="special">-(</span><span class="number">221</span> <span class="identifier">p</span><span class="special">^</span><span class="number">6</span><span class="special">)/</span><span class="number">8505</span><span class="special">+(</span><span class="number">680863</span> <span class="identifier">p</span><span class="special">^</span><span class="number">7</span><span class="special">)/</span><span class="number">43545600</span> <span class="special">...</span>
</pre>
<p>
      These constants are computed at compile time for the full precision for any
      <code class="computeroutput"><span class="identifier">RealType</span> <span class="identifier">T</span></code>
      using the original rationals from Fukushima Table 3.
    </p>
<p>
      Longer decimal digits strings are rationals pre-evaluated using <a href="http://www.wolfram.com/products/mathematica/index.html" target="_top">Wolfram
      Mathematica</a>. Some integer constants overflow, so largest size available
      is used, suffixed by <code class="computeroutput"><span class="identifier">uLL</span></code>.
    </p>
<p>
      Above the 14th term, the rationals exceed the range of <code class="computeroutput"><span class="keyword">unsigned</span>
      <span class="keyword">long</span> <span class="keyword">long</span></code>
      and are replaced by pre-computed decimal values at least 21 digits precision
      == <code class="computeroutput"><span class="identifier">max_digits10</span></code> for <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>.
    </p>
<p>
      A macro <code class="computeroutput"><span class="identifier">BOOST_MATH_TEST_VALUE</span></code>
      (defined in <a href="../../../test/test_value.hpp" target="_top">test_value.hpp</a>)
      taking a decimal floating-point literal was used to allow testing with both
      built-in floating-point types like <code class="computeroutput"><span class="keyword">double</span></code>
      which have constructors taking literal decimal values like <code class="computeroutput"><span class="number">3.14</span></code>,
      <span class="bold"><strong>and</strong></span> also multiprecision and other User-defined
      Types that only provide full-precision construction from decimal digit strings
      like <code class="computeroutput"><span class="string">"3.14"</span></code>. (Construction
      of multiprecision types from built-in floating-point types only provides the
      precision of the built-in type, like <code class="computeroutput"><span class="keyword">double</span></code>,
      only 17 decimal digits).
    </p>
<div class="tip"><table border="0" summary="Tip">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Tip]" src="../../../../../doc/src/images/tip.png"></td>
<th align="left">Tip</th>
</tr>
<tr><td align="left" valign="top"><p>
        Be exceeding careful not to silently lose precision by constructing multiprecision
        types from literal decimal types, usually <code class="literal">double</code>. Use
        decimal digit strings like "3.1459" instead. See examples.
      </p></td></tr>
</table></div>
<p>
      Fukushima's implementation used 20 series terms; it was confirmed that using
      more terms does not usefully increase accuracy.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h23"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.wm1_near_zero"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.wm1_near_zero">Lambert
      <span class="emphasis"><em>W</em></span><sub>-1</sub> arguments values very near zero.</a>
    </h6>
<p>
      The lookup tables of Fukushima have only 64 elements, so that the z argument
      nearest zero is -1.0264389699511303e-26, that corresponds to a maximum Lambert
      <span class="emphasis"><em>W</em></span><sub>-1</sub> value of 64.0. Fukushima's implementation did not cater
      for z argument values that are smaller (nearer to zero), but this implementation
      adds code to accept smaller (but not denormalised) values of z. A crude approximation
      for these very small values is to take the exponent and multiply by ln[10]
      ~= 2.3. We also tried the approximation first proposed by Corless et al. using
      ln(-z), (equation 4.19 page 349) and then tried improving by a 2nd term -ln(ln(-z)),
      and finally the ratio term -ln(ln(-z))/ln(-z).
    </p>
<p>
      For a z very close to z = -1.0264389699511303e-26 when W = 64, when effect
      of ln(ln(-z) term, and ratio L1/L2 is greatest, the possible 'guesses' are
    </p>
<pre class="programlisting"><span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="number">1.e-26</span><span class="special">,</span> <span class="identifier">w</span> <span class="special">=</span> <span class="special">-</span><span class="number">64.02</span><span class="special">,</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="special">-</span><span class="number">64.0277</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">59.8672</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="number">4.0921</span><span class="special">,</span> <span class="identifier">llz</span><span class="special">/</span><span class="identifier">lz</span> <span class="special">=</span> <span class="special">-</span><span class="number">0.0684</span>
</pre>
<p>
      whereas at the minimum (unnormalized) z
    </p>
<pre class="programlisting"><span class="identifier">z</span> <span class="special">=</span> <span class="special">-</span><span class="number">2.2250e-308</span><span class="special">,</span> <span class="identifier">w</span> <span class="special">=</span> <span class="special">-</span><span class="number">714.9</span><span class="special">,</span> <span class="identifier">guess</span> <span class="special">=</span> <span class="special">-</span><span class="number">714.9687</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="special">-</span><span class="number">708.3964</span><span class="special">,</span> <span class="identifier">ln</span><span class="special">(-</span><span class="identifier">ln</span><span class="special">(-</span><span class="identifier">z</span><span class="special">)</span> <span class="special">=</span> <span class="number">6.5630</span><span class="special">,</span> <span class="identifier">llz</span><span class="special">/</span><span class="identifier">lz</span> <span class="special">=</span> <span class="special">-</span><span class="number">0.0092</span>
</pre>
<p>
      Although the addition of the 3rd ratio term did not reduce the number of Halley
      iterations needed, it might allow return of a better low precision estimate
      <span class="bold"><strong>without any Halley iterations</strong></span>. For the worst
      case near w = 64, the error in the 'guess' is 0.008, ratio 0.0001 or 1 in 10,000
      digits 10 ~= 4. Two log evaluations are still needed, but is probably over
      an order of magnitude faster.
    </p>
<p>
      Halley's method was then used to refine the estimate of Lambert <span class="emphasis"><em>W</em></span><sub>-1</sub> from
      this guess. Experiments showed that although all approximations reached with
      <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit in the
      last place (ULP)</a> of the closest representable value, the computational
      cost of the log functions was easily paid by far fewer iterations (typically
      from 8 down to 4 iterations for double or float).
    </p>
<h6>
<a name="math_toolkit.lambert_w.h24"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.halley"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.halley">Halley
      refinement</a>
    </h6>
<p>
      After obtaining a double approximation, for <code class="computeroutput"><span class="keyword">double</span></code>,
      <code class="computeroutput"><span class="keyword">long</span> <span class="keyword">double</span></code>
      and <code class="computeroutput"><span class="identifier">quad</span></code> 128-bit precision,
      a single iteration should suffice because Halley iteration should triple the
      precision with each step (as long as the function is well behaved - and it
      is), and since we have at least half of the bits correct already, one Halley
      step is ample to get to 128-bit precision.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h25"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.lambert_w_derivatives"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.lambert_w_derivatives">Lambert
      W Derivatives</a>
    </h6>
<p>
      The derivatives are computed using the formulae in <a href="https://en.wikipedia.org/wiki/Lambert_W_function#Derivative" target="_top">Wikipedia</a>.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h26"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.testing"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.testing">Testing</a>
    </h5>
<p>
      Initial testing of the algorithm was done using a small number of spot tests.
    </p>
<p>
      After it was established that the underlying algorithm (including unlimited
      Halley refinements with a tight terminating criterion) was correct, some tables
      of Lambert W values were computed using a 100 decimal digit precision <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      <code class="computeroutput"><span class="identifier">cpp_dec_float_100</span></code> type and
      saved as a C++ program that will initialise arrays of values of z arguments
      and lambert_W0 (<code class="computeroutput"><span class="identifier">lambert_w_mp_high_values</span><span class="special">.</span><span class="identifier">ipp</span></code> and
      <code class="computeroutput"><span class="identifier">lambert_w_mp_low_values</span><span class="special">.</span><span class="identifier">ipp</span></code> ).
    </p>
<p>
      (A few of these pairs were checked against values computed by Wolfram Alpha
      to try to guard against mistakes; all those tested agreed to the penultimate
      decimal place, so they can be considered reliable to at least 98 decimal digits
      precision).
    </p>
<p>
      A macro <code class="computeroutput"><span class="identifier">BOOST_MATH_TEST_VALUE</span></code>
      was used to allow tests with any real type, both <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
      (built-in) types</a> and <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>.
      (This is necessary because <a href="http://en.cppreference.com/w/cpp/language/types" target="_top">fundamental
      (built-in) types</a> have a constructor from floating-point literals like
      3.1459F, 3.1459 or 3.1459L whereas <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      types may lose precision unless constructed from decimal digits strings like
      "3.1459").
    </p>
<p>
      The 100-decimal digits precision pairs were then used to assess the precision
      of less-precise types, including <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      <code class="computeroutput"><span class="identifier">cpp_bin_float_quad</span></code> and <code class="computeroutput"><span class="identifier">cpp_bin_float_50</span></code>. <code class="computeroutput"><span class="keyword">static_cast</span></code>ing
      from the high precision types should give the closest representable value of
      the less-precise type; this is then be used to assess the precision of the
      Lambert W algorithm.
    </p>
<p>
      Tests using confirm that over nearly all the range of z arguments, nearly all
      estimates are the nearest <a href="http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding" target="_top">representable</a>
      value, a minority are within 1 <a href="http://en.wikipedia.org/wiki/Unit_in_the_last_place" target="_top">Unit
      in the last place (ULP)</a> and only a very few 2 ULP.
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_w0_errors_graph.svg" align="middle"></span>

      </p></blockquote></div>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../graphs/lambert_wm1_errors_graph.svg" align="middle"></span>

      </p></blockquote></div>
<p>
      For the range of z arguments over the range -0.35 to 0.5, a different algorithm
      is used, but the same technique of evaluating reference values using a <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      <code class="computeroutput"><span class="identifier">cpp_dec_float_100</span></code> was used.
      For extremely small z arguments, near zero, and those extremely near the singularity
      at the branch point, precision can be much lower, as might be expected.
    </p>
<p>
      See source at: <a href="../../../example/lambert_w_simple_examples.cpp" target="_top">lambert_w_simple_examples.cpp</a>
      <a href="../../../test/test_lambert_w.cpp" target="_top">test_lambert_w.cpp</a> contains
      routine tests using <a href="https://www.boost.org/doc/libs/release/libs/test/doc/html/index.html" target="_top">Boost.Test</a>.
      <a href="../../../tools/lambert_w_errors_graph.cpp" target="_top">lambert_w_errors_graph.cpp</a>
      generating error graphs.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h27"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.quadrature_testing"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.quadrature_testing">Testing
      with quadrature</a>
    </h6>
<p>
      A further method of testing over a wide range of argument z values was devised
      by Nick Thompson (cunningly also to test the recently written quadrature routines
      including <a href="../../../../../libs/multiprecision/doc/html/index.html" target="_top">Boost.Multiprecision</a>
      !). These are definite integral formulas involving the W function that are
      exactly known constants, for example, LambertW0(1/(z²) == √(2π), see <a href="https://en.wikipedia.org/wiki/Lambert_W_function#Definite_integrals" target="_top">Definite
      Integrals</a>. Some care was needed to avoid overflow and underflow as
      the integral function must evaluate to a finite result over the entire range.
    </p>
<h6>
<a name="math_toolkit.lambert_w.h28"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.other_implementations"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.other_implementations">Other
      implementations</a>
    </h6>
<p>
      The Lambert W has also been discussed in a <a href="http://lists.boost.org/Archives/boost/2016/09/230819.php" target="_top">Boost
      thread</a>.
    </p>
<p>
      This also gives link to a prototype version by which also gives complex results
      <code class="literal">(x &lt; -exp(-1)</code>, about -0.367879). <a href="https://github.com/CzB404/lambert_w/" target="_top">Balazs
      Cziraki 2016</a> Physicist, PhD student at Eotvos Lorand University, ELTE
      TTK Institute of Physics, Budapest. has also produced a prototype C++ library
      that can compute the Lambert W function for floating point <span class="bold"><strong>and
      complex number types</strong></span>. This is not implemented here but might be
      completed in the future.
    </p>
<h5>
<a name="math_toolkit.lambert_w.h29"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.acknowledgements"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.acknowledgements">Acknowledgements</a>
    </h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          Thanks to Wolfram for use of their invaluable online Wolfram Alpha service.
        </li>
<li class="listitem">
          Thanks for Mark Chapman for performing offline Wolfram computations.
        </li>
</ul></div>
<h5>
<a name="math_toolkit.lambert_w.h30"></a>
      <span class="phrase"><a name="math_toolkit.lambert_w.references"></a></span><a class="link" href="lambert_w.html#math_toolkit.lambert_w.references">References</a>
    </h5>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
          NIST Digital Library of Mathematical Functions. <a href="http://dlmf.nist.gov/4.13.F1" target="_top">http://dlmf.nist.gov/4.13.F1</a>.
        </li>
<li class="listitem">
          <a href="http://www.orcca.on.ca/LambertW/" target="_top">Lambert W Poster</a>,
          R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffery and D. E. Knuth,
          On the Lambert W function Advances in Computational Mathematics, Vol 5,
          (1996) pp 329-359.
        </li>
<li class="listitem">
          <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms443/toms443.html" target="_top">TOMS443</a>,
          Andrew Barry, S. J. Barry, Patricia Culligan-Hensley, Algorithm 743: WAPR
          - A Fortran routine for calculating real values of the W-function,<br>
          ACM Transactions on Mathematical Software, Volume 21, Number 2, June 1995,
          pages 172-181.<br> BISECT approximates the W function using bisection
          (GNU licence). Original FORTRAN77 version by Andrew Barry, S. J. Barry,
          Patricia Culligan-Hensley, this version by C++ version by John Burkardt.
        </li>
<li class="listitem">
          <a href="https://people.sc.fsu.edu/~jburkardt/f_src/toms743/toms743.html" target="_top">TOMS743</a>
          Fortran 90 (updated 2014).
        </li>
</ol></div>
<p>
      Initial guesses based on:
    </p>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
          R.M.Corless, G.H.Gonnet, D.E.G.Hare, D.J.Jeffrey, and D.E.Knuth, On the
          Lambert W function, Adv.Comput.Math., vol. 5, pp. 329 to 359, (1996).
        </li>
<li class="listitem">
          D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, and F.
          Stagnitti. Analytical approximations for real values of the Lambert W-function.
          Mathematics and Computers in Simulation, 53(1), 95-103 (2000).
        </li>
<li class="listitem">
          D.A. Barry, J.-Y. Parlange, L. Li, H. Prommer, C.J. Cunningham, and F.
          Stagnitti. Erratum to analytical approximations for real values of the
          Lambert W-function. Mathematics and Computers in Simulation, 59(6):543-543,
          2002.
        </li>
<li class="listitem">
          C++ <a href="https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#c-cplusplus-language-support" target="_top">CUDA
          NVidia GPU C/C++ language support</a> version of Luu algorithm, <a href="https://github.com/thomasluu/plog/blob/master/plog.cu" target="_top">plog</a>.
        </li>
<li class="listitem">
          <a href="http://discovery.ucl.ac.uk/1482128/1/Luu_thesis.pdf" target="_top">Thomas
          Luu, Thesis, University College London (2015)</a>, see routine 11,
          page 98 for Lambert W algorithm.
        </li>
<li class="listitem">
          Having Fun with Lambert W(x) Function, Darko Veberic University of Nova
          Gorica, Slovenia IK, Forschungszentrum Karlsruhe, Germany, J. Stefan Institute,
          Ljubljana, Slovenia.
        </li>
<li class="listitem">
          François Chapeau-Blondeau and Abdelilah Monir, Numerical Evaluation of the
          Lambert W Function and Application to Generation of Generalized Gaussian
          Noise With Exponent 1/2, IEEE Transactions on Signal Processing, 50(9)
          (2002) 2160 - 2165.
        </li>
<li class="listitem">
          Toshio Fukushima, Precise and fast computation of Lambert W-functions without
          transcendental function evaluations, Journal of Computational and Applied
          Mathematics, 244 (2013) 77-89.
        </li>
<li class="listitem">
          T.C. Banwell and A. Jayakumar, Electronic Letter, Feb 2000, 36(4), pages
          291-2. Exact analytical solution for current flow through diode with series
          resistance. <a href="https://doi.org/10.1049/el:20000301" target="_top">https://doi.org/10.1049/el:20000301</a>
        </li>
<li class="listitem">
          Princeton Companion to Applied Mathematics, 'The Lambert-W function', Section
          1.3: Series and Generating Functions.
        </li>
<li class="listitem">
          Cleve Moler, Mathworks blog <a href="https://blogs.mathworks.com/cleve/2013/09/02/the-lambert-w-function/#bfba4e2d-e049-45a6-8285-fe8b51d69ce7" target="_top">The
          Lambert W Function</a>
        </li>
<li class="listitem">
          Digital Library of Mathematical Function, <a href="https://dlmf.nist.gov/4.13" target="_top">Lambert
          W function</a>.
        </li>
</ol></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="jacobi_theta/jacobi_theta4.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../special.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="zetas.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>