1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>The Lanczos Approximation</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../backgrounders.html" title="Chapter 24. Backgrounders">
<link rel="prev" href="relative_error.html" title="Relative Error">
<link rel="next" href="remez.html" title="The Remez Method">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="relative_error.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="remez.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.lanczos"></a><a class="link" href="lanczos.html" title="The Lanczos Approximation">The Lanczos Approximation</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.lanczos.h0"></a>
<span class="phrase"><a name="math_toolkit.lanczos.motivation"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.motivation">Motivation</a>
</h5>
<p>
<span class="emphasis"><em>Why base gamma and gamma-like functions on the Lanczos approximation?</em></span>
</p>
<p>
First of all I should make clear that for the gamma function over real numbers
(as opposed to complex ones) the Lanczos approximation (See <a href="http://en.wikipedia.org/wiki/Lanczos_approximation" target="_top">Wikipedia
or </a> <a href="http://mathworld.wolfram.com/LanczosApproximation.html" target="_top">Mathworld</a>)
appears to offer no clear advantage over more traditional methods such as
<a href="http://en.wikipedia.org/wiki/Stirling_approximation" target="_top">Stirling's
approximation</a>. <a class="link" href="lanczos.html#pugh">Pugh</a> carried out an extensive
comparison of the various methods available and discovered that they were all
very similar in terms of complexity and relative error. However, the Lanczos
approximation does have a couple of properties that make it worthy of further
consideration:
</p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
The approximation has an easy to compute truncation error that holds for
all <span class="emphasis"><em>z > 0</em></span>. In practice that means we can use the
same approximation for all <span class="emphasis"><em>z > 0</em></span>, and be certain
that no matter how large or small <span class="emphasis"><em>z</em></span> is, the truncation
error will <span class="emphasis"><em>at worst</em></span> be bounded by some finite value.
</li>
<li class="listitem">
The approximation has a form that is particularly amenable to analytic
manipulation, in particular ratios of gamma or gamma-like functions are
particularly easy to compute without resorting to logarithms.
</li>
</ul></div>
<p>
It is the combination of these two properties that make the approximation attractive:
Stirling's approximation is highly accurate for large z, and has some of the
same analytic properties as the Lanczos approximation, but can't easily be
used across the whole range of z.
</p>
<p>
As the simplest example, consider the ratio of two gamma functions: one could
compute the result via lgamma:
</p>
<pre class="programlisting"><span class="identifier">exp</span><span class="special">(</span><span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span> <span class="identifier">lgamma</span><span class="special">(</span><span class="identifier">b</span><span class="special">));</span>
</pre>
<p>
However, even if lgamma is uniformly accurate to 0.5ulp, the worst case relative
error in the above can easily be shown to be:
</p>
<pre class="programlisting"><span class="identifier">Erel</span> <span class="special">></span> <span class="identifier">a</span> <span class="special">*</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">a</span><span class="special">)/</span><span class="number">2</span> <span class="special">+</span> <span class="identifier">b</span> <span class="special">*</span> <span class="identifier">log</span><span class="special">(</span><span class="identifier">b</span><span class="special">)/</span><span class="number">2</span>
</pre>
<p>
For small <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span> that's not a problem,
but to put the relationship another way: <span class="emphasis"><em>each time a and b increase
in magnitude by a factor of 10, at least one decimal digit of precision will
be lost.</em></span>
</p>
<p>
In contrast, by analytically combining like power terms in a ratio of Lanczos
approximation's, these errors can be virtually eliminated for small <span class="emphasis"><em>a</em></span>
and <span class="emphasis"><em>b</em></span>, and kept under control for very large (or very
small for that matter) <span class="emphasis"><em>a</em></span> and <span class="emphasis"><em>b</em></span>. Of
course, computing large powers is itself a notoriously hard problem, but even
so, analytic combinations of Lanczos approximations can make the difference
between obtaining a valid result, or simply garbage. Refer to the implementation
notes for the <a class="link" href="sf_beta/beta_function.html" title="Beta">beta</a>
function for an example of this method in practice. The incomplete <a class="link" href="sf_gamma/igamma.html" title="Incomplete Gamma Functions">gamma_p
gamma</a> and <a class="link" href="sf_beta/ibeta_function.html" title="Incomplete Beta Functions">beta</a>
functions use similar analytic combinations of power terms, to combine gamma
and beta functions divided by large powers into single (simpler) expressions.
</p>
<h5>
<a name="math_toolkit.lanczos.h1"></a>
<span class="phrase"><a name="math_toolkit.lanczos.the_approximation"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.the_approximation">The
Approximation</a>
</h5>
<p>
The Lanczos Approximation to the Gamma Function is given by:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos0.svg"></span>
</p></blockquote></div>
<p>
Where S<sub>g</sub>(z) is an infinite sum, that is convergent for all z > 0, and <span class="emphasis"><em>g</em></span>
is an arbitrary parameter that controls the "shape" of the terms
in the sum which is given by:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos0a.svg"></span>
</p></blockquote></div>
<p>
With individual coefficients defined in closed form by:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos0b.svg"></span>
</p></blockquote></div>
<p>
However, evaluation of the sum in that form can lead to numerical instability
in the computation of the ratios of rising and falling factorials (effectively
we're multiplying by a series of numbers very close to 1, so roundoff errors
can accumulate quite rapidly).
</p>
<p>
The Lanczos approximation is therefore often written in partial fraction form
with the leading constants absorbed by the coefficients in the sum:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos1.svg"></span>
</p></blockquote></div>
<p>
where:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos2.svg"></span>
</p></blockquote></div>
<p>
Again parameter <span class="emphasis"><em>g</em></span> is an arbitrarily chosen constant, and
<span class="emphasis"><em>N</em></span> is an arbitrarily chosen number of terms to evaluate
in the "Lanczos sum" part.
</p>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
Some authors choose to define the sum from k=1 to N, and hence end up with
N+1 coefficients. This happens to confuse both the following discussion and
the code (since C++ deals with half open array ranges, rather than the closed
range of the sum). This convention is consistent with <a class="link" href="lanczos.html#godfrey">Godfrey</a>,
but not <a class="link" href="lanczos.html#pugh">Pugh</a>, so take care when referring to
the literature in this field.
</p></td></tr>
</table></div>
<h5>
<a name="math_toolkit.lanczos.h2"></a>
<span class="phrase"><a name="math_toolkit.lanczos.computing_the_coefficients"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.computing_the_coefficients">Computing
the Coefficients</a>
</h5>
<p>
The coefficients C0..CN-1 need to be computed from <span class="emphasis"><em>N</em></span> and
<span class="emphasis"><em>g</em></span> at high precision, and then stored as part of the program.
Calculation of the coefficients is performed via the method of <a class="link" href="lanczos.html#godfrey">Godfrey</a>;
let the constants be contained in a column vector P, then:
</p>
<p>
P = D B C F
</p>
<p>
where B is an NxN matrix:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos4.svg"></span>
</p></blockquote></div>
<p>
D is an NxN matrix:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos3.svg"></span>
</p></blockquote></div>
<p>
C is an NxN matrix:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos5.svg"></span>
</p></blockquote></div>
<p>
and F is an N element column vector:
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos6.svg"></span>
</p></blockquote></div>
<p>
Note than the matrices B, D and C contain all integer terms and depend only
on <span class="emphasis"><em>N</em></span>, this product should be computed first, and then
multiplied by <span class="emphasis"><em>F</em></span> as the last step.
</p>
<h5>
<a name="math_toolkit.lanczos.h3"></a>
<span class="phrase"><a name="math_toolkit.lanczos.choosing_the_right_parameters"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.choosing_the_right_parameters">Choosing
the Right Parameters</a>
</h5>
<p>
The trick is to choose <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span> to
give the desired level of accuracy: choosing a small value for <span class="emphasis"><em>g</em></span>
leads to a strictly convergent series, but one which converges only slowly.
Choosing a larger value of <span class="emphasis"><em>g</em></span> causes the terms in the series
to be large and/or divergent for about the first <span class="emphasis"><em>g-1</em></span> terms,
and to then suddenly converge with a "crunch".
</p>
<p>
<a class="link" href="lanczos.html#pugh">Pugh</a> has determined the optimal value of <span class="emphasis"><em>g</em></span>
for <span class="emphasis"><em>N</em></span> in the range <span class="emphasis"><em>1 <= N <= 60</em></span>:
unfortunately in practice choosing these values leads to cancellation errors
in the Lanczos sum as the largest term in the (alternating) series is approximately
1000 times larger than the result. These optimal values appear not to be useful
in practice unless the evaluation can be done with a number of guard digits
<span class="emphasis"><em>and</em></span> the coefficients are stored at higher precision than
that desired in the result. These values are best reserved for say, computing
to float precision with double precision arithmetic.
</p>
<div class="table">
<a name="math_toolkit.lanczos.optimal_choices_for_n_and_g_when"></a><p class="title"><b>Table 24.1. Optimal choices for N and g when computing with guard digits (source:
Pugh)</b></p>
<div class="table-contents"><table class="table" summary="Optimal choices for N and g when computing with guard digits (source:
Pugh)">
<colgroup>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Significand Size
</p>
</th>
<th>
<p>
N
</p>
</th>
<th>
<p>
g
</p>
</th>
<th>
<p>
Max Error
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
24
</p>
</td>
<td>
<p>
6
</p>
</td>
<td>
<p>
5.581
</p>
</td>
<td>
<p>
9.51e-12
</p>
</td>
</tr>
<tr>
<td>
<p>
53
</p>
</td>
<td>
<p>
13
</p>
</td>
<td>
<p>
13.144565
</p>
</td>
<td>
<p>
9.2213e-23
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
The alternative described by <a class="link" href="lanczos.html#godfrey">Godfrey</a> is to perform
an exhaustive search of the <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span>
parameter space to determine the optimal combination for a given <span class="emphasis"><em>p</em></span>
digit floating-point type. Repeating this work found a good approximation for
double precision arithmetic (close to the one <a class="link" href="lanczos.html#godfrey">Godfrey</a>
found), but failed to find really good approximations for 80 or 128-bit long
doubles. Further it was observed that the approximations obtained tended to
optimised for the small values of z (1 < z < 200) used to test the implementation
against the factorials. Computing ratios of gamma functions with large arguments
were observed to suffer from error resulting from the truncation of the Lancozos
series.
</p>
<p>
<a class="link" href="lanczos.html#pugh">Pugh</a> identified all the locations where the theoretical
error of the approximation were at a minimum, but unfortunately has published
only the largest of these minima. However, he makes the observation that the
minima coincide closely with the location where the first neglected term (a<sub>N</sub>)
in the Lanczos series S<sub>g</sub>(z) changes sign. These locations are quite easy to
locate, albeit with considerable computer time. These "sweet spots"
need only be computed once, tabulated, and then searched when required for
an approximation that delivers the required precision for some fixed precision
type.
</p>
<p>
Unfortunately, following this path failed to find a really good approximation
for 128-bit long doubles, and those found for 64 and 80-bit reals required
an excessive number of terms. There are two competing issues here: high precision
requires a large value of <span class="emphasis"><em>g</em></span>, but avoiding cancellation
errors in the evaluation requires a small <span class="emphasis"><em>g</em></span>.
</p>
<p>
At this point note that the Lanczos sum can be converted into rational form
(a ratio of two polynomials, obtained from the partial-fraction form using
polynomial arithmetic), and doing so changes the coefficients so that <span class="emphasis"><em>they
are all positive</em></span>. That means that the sum in rational form can be
evaluated without cancellation error, albeit with double the number of coefficients
for a given N. Repeating the search of the "sweet spots", this time
evaluating the Lanczos sum in rational form, and testing only those "sweet
spots" whose theoretical error is less than the machine epsilon for the
type being tested, yielded good approximations for all the types tested. The
optimal values found were quite close to the best cases reported by <a class="link" href="lanczos.html#pugh">Pugh</a>
(just slightly larger <span class="emphasis"><em>N</em></span> and slightly smaller <span class="emphasis"><em>g</em></span>
for a given precision than <a class="link" href="lanczos.html#pugh">Pugh</a> reports), and even
though converting to rational form doubles the number of stored coefficients,
it should be noted that half of them are integers (and therefore require less
storage space) and the approximations require a smaller <span class="emphasis"><em>N</em></span>
than would otherwise be required, so fewer floating point operations may be
required overall.
</p>
<p>
The following table shows the optimal values for <span class="emphasis"><em>N</em></span> and
<span class="emphasis"><em>g</em></span> when computing at fixed precision. These should be taken
as work in progress: there are no values for 106-bit significand machines (Darwin
long doubles & NTL quad_float), and further optimisation of the values
of <span class="emphasis"><em>g</em></span> may be possible. Errors given in the table are estimates
of the error due to truncation of the Lanczos infinite series to <span class="emphasis"><em>N</em></span>
terms. They are calculated from the sum of the first five neglected terms -
and are known to be rather pessimistic estimates - although it is noticeable
that the best combinations of <span class="emphasis"><em>N</em></span> and <span class="emphasis"><em>g</em></span>
occurred when the estimated truncation error almost exactly matches the machine
epsilon for the type in question.
</p>
<div class="table">
<a name="math_toolkit.lanczos.optimum_value_for_n_and_g_when_c"></a><p class="title"><b>Table 24.2. Optimum value for N and g when computing at fixed precision</b></p>
<div class="table-contents"><table class="table" summary="Optimum value for N and g when computing at fixed precision">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
<p>
Significand Size
</p>
</th>
<th>
<p>
Platform/Compiler Used
</p>
</th>
<th>
<p>
N
</p>
</th>
<th>
<p>
g
</p>
</th>
<th>
<p>
Max Truncation Error
</p>
</th>
</tr></thead>
<tbody>
<tr>
<td>
<p>
24
</p>
</td>
<td>
<p>
Win32, VC++ 7.1
</p>
</td>
<td>
<p>
6
</p>
</td>
<td>
<p>
1.428456135094165802001953125
</p>
</td>
<td>
<p>
9.41e-007
</p>
</td>
</tr>
<tr>
<td>
<p>
53
</p>
</td>
<td>
<p>
Win32, VC++ 7.1
</p>
</td>
<td>
<p>
13
</p>
</td>
<td>
<p>
6.024680040776729583740234375
</p>
</td>
<td>
<p>
3.23e-016
</p>
</td>
</tr>
<tr>
<td>
<p>
64
</p>
</td>
<td>
<p>
Suse Linux 9 IA64, gcc-3.3.3
</p>
</td>
<td>
<p>
17
</p>
</td>
<td>
<p>
12.2252227365970611572265625
</p>
</td>
<td>
<p>
2.34e-024
</p>
</td>
</tr>
<tr>
<td>
<p>
116
</p>
</td>
<td>
<p>
HP Tru64 Unix 5.1B / Alpha, Compaq C++ V7.1-006
</p>
</td>
<td>
<p>
24
</p>
</td>
<td>
<p>
20.3209821879863739013671875
</p>
</td>
<td>
<p>
4.75e-035
</p>
</td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><p>
Finally note that the Lanczos approximation can be written as follows by removing
a factor of exp(g) from the denominator, and then dividing all the coefficients
by exp(g):
</p>
<div class="blockquote"><blockquote class="blockquote"><p>
<span class="inlinemediaobject"><img src="../../equations/lanczos7.svg"></span>
</p></blockquote></div>
<p>
This form is more convenient for calculating lgamma, but for the gamma function
the division by <span class="emphasis"><em>e</em></span> turns a possibly exact quality into
an inexact value: this reduces accuracy in the common case that the input is
exact, and so isn't used for the gamma function.
</p>
<h5>
<a name="math_toolkit.lanczos.h4"></a>
<span class="phrase"><a name="math_toolkit.lanczos.references"></a></span><a class="link" href="lanczos.html#math_toolkit.lanczos.references">References</a>
</h5>
<div class="orderedlist"><ol class="orderedlist" type="1">
<li class="listitem">
<a name="godfrey"></a>Paul Godfrey, <a href="http://my.fit.edu/~gabdo/gamma.txt" target="_top">"A
note on the computation of the convergent Lanczos complex Gamma approximation"</a>.
</li>
<li class="listitem">
<a name="pugh"></a>Glendon Ralph Pugh, <a href="http://bh0.physics.ubc.ca/People/matt/Doc/ThesesOthers/Phd/pugh.pdf" target="_top">"An
Analysis of the Lanczos Gamma Approximation"</a>, PhD Thesis November
2004.
</li>
<li class="listitem">
Viktor T. Toth, <a href="http://www.rskey.org/gamma.htm" target="_top">"Calculators
and the Gamma Function"</a>.
</li>
<li class="listitem">
Mathworld, <a href="http://mathworld.wolfram.com/LanczosApproximation.html" target="_top">The
Lanczos Approximation</a>.
</li>
</ol></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
Walker and Xiaogang Zhang<p>
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
</p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="relative_error.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../backgrounders.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="remez.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>
|