File: random_search.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (197 lines) | stat: -rw-r--r-- 20,480 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Random Search</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../optimization.html" title="Chapter 11. Optimization">
<link rel="prev" href="jso.html" title="Algorithm jSO">
<link rel="next" href="cma_es.html" title="Evolution Strategy with Covariance Matrix Adaptation">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="jso.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../optimization.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cma_es.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.random_search"></a><a class="link" href="random_search.html" title="Random Search">Random Search</a>
</h2></div></div></div>
<h4>
<a name="math_toolkit.random_search.h0"></a>
      <span class="phrase"><a name="math_toolkit.random_search.synopsis"></a></span><a class="link" href="random_search.html#math_toolkit.random_search.synopsis">Synopsis</a>
    </h4>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">optimization</span><span class="special">/</span><span class="identifier">random_search</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>

<span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">optimization</span> <span class="special">{</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="keyword">struct</span> <span class="identifier">random_search_parameters</span> <span class="special">{</span>
    <span class="keyword">using</span> <span class="identifier">Real</span> <span class="special">=</span> <span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">::</span><span class="identifier">value_type</span><span class="special">;</span>
    <span class="identifier">ArgumentContainer</span> <span class="identifier">lower_bounds</span><span class="special">;</span>
    <span class="identifier">ArgumentContainer</span> <span class="identifier">upper_bounds</span><span class="special">;</span>
    <span class="identifier">size_t</span> <span class="identifier">max_function_calls</span> <span class="special">=</span> <span class="number">0</span><span class="special">;</span>
    <span class="identifier">ArgumentContainer</span> <span class="keyword">const</span> <span class="special">*</span> <span class="identifier">initial_guess</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">;</span>
<span class="special">};</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Func</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">URBG</span><span class="special">&gt;</span>
<span class="identifier">ArgumentContainer</span> <span class="identifier">random_search</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Func</span> <span class="identifier">cost_function</span><span class="special">,</span>
                                <span class="identifier">random_search_parameters</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">params</span><span class="special">,</span>
                                <span class="identifier">URBG</span> <span class="special">&amp;</span><span class="identifier">gen</span><span class="special">,</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="identifier">value_to_reach</span>
                                  <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;::</span><span class="identifier">quiet_NaN</span><span class="special">(),</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="special">*</span><span class="identifier">cancellation</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;</span> <span class="special">*</span><span class="identifier">current_minimum_cost</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;&gt;</span> <span class="special">*</span><span class="identifier">queries</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">);</span>

<span class="special">}</span> <span class="comment">// namespaces</span>
</pre>
<p>
      The <code class="computeroutput"><span class="identifier">random_search</span></code> function
      searches for a global minimum of a function. There is no special sauce to this
      algorithm-it merely blasts function calls over threads. It's existence is justified
      by the "No free lunch" theorem in optimization, which "establishes
      that for any algorithm, any elevated performance over one class of problems
      is offset by performance over another class." In practice, it is not clear
      that the conditions of the NFL theorem holds, and on test cases, <code class="computeroutput"><span class="identifier">random_search</span></code> is slower and less accurate
      than (say) differential evolution, jSO, and CMA-ES. However, it is often the
      case that rapid convergence is not the goal: For example, we often want to
      spend some time exploring the cost function surface before moving to a faster
      converging algorithm. In addition, random search is embarrassingly parallel,
      which allows us to avoid Amdahl's law-induced performance problems.
    </p>
<h4>
<a name="math_toolkit.random_search.h1"></a>
      <span class="phrase"><a name="math_toolkit.random_search.parameters"></a></span><a class="link" href="random_search.html#math_toolkit.random_search.parameters">Parameters</a>
    </h4>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          <code class="computeroutput"><span class="identifier">lower_bounds</span></code>: A container
          representing the lower bounds of the optimization space along each dimension.
          The <code class="computeroutput"><span class="special">.</span><span class="identifier">size</span><span class="special">()</span></code> of the bounds should return the dimension
          of the problem.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">upper_bounds</span></code>: A container
          representing the upper bounds of the optimization space along each dimension.
          It should have the same size of <code class="computeroutput"><span class="identifier">lower_bounds</span></code>,
          and each element should be &gt;= the corresponding element of <code class="computeroutput"><span class="identifier">lower_bounds</span></code>.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">max_function_calls</span></code>: Defaults
          to 10000*threads.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">initial_guess</span></code>: An optional
          guess for where we should start looking for solutions. This is provided
          for consistency with other optimization functions-it's not particularly
          useful for this function.
        </li>
</ul></div>
<h4>
<a name="math_toolkit.random_search.h2"></a>
      <span class="phrase"><a name="math_toolkit.random_search.the_function"></a></span><a class="link" href="random_search.html#math_toolkit.random_search.the_function">The
      function</a>
    </h4>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Func</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">URBG</span><span class="special">&gt;</span>
<span class="identifier">ArgumentContainer</span> <span class="identifier">random_search</span><span class="special">(</span><span class="keyword">const</span> <span class="identifier">Func</span> <span class="identifier">cost_function</span><span class="special">,</span>
                                <span class="identifier">random_search_parameters</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span><span class="identifier">params</span><span class="special">,</span>
                                <span class="identifier">URBG</span> <span class="special">&amp;</span><span class="identifier">gen</span><span class="special">,</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;</span> <span class="identifier">value_to_reach</span>
                                  <span class="special">=</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">numeric_limits</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;::</span><span class="identifier">quiet_NaN</span><span class="special">(),</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="keyword">bool</span><span class="special">&gt;</span> <span class="special">*</span><span class="identifier">cancellation</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">atomic</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;</span> <span class="special">*</span><span class="identifier">current_minimum_cost</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">,</span>
                                <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">pair</span><span class="special">&lt;</span><span class="identifier">ArgumentContainer</span><span class="special">,</span> <span class="identifier">std</span><span class="special">::</span><span class="identifier">invoke_result_t</span><span class="special">&lt;</span><span class="identifier">Func</span><span class="special">,</span> <span class="identifier">ArgumentContainer</span><span class="special">&gt;&gt;&gt;</span> <span class="special">*</span><span class="identifier">queries</span> <span class="special">=</span> <span class="keyword">nullptr</span><span class="special">)</span>
</pre>
<p>
      Parameters:
    </p>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
          <code class="computeroutput"><span class="identifier">cost_function</span></code>: The cost
          function to be minimized.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">params</span></code>: The parameters
          to the algorithm as described above.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">gen</span></code>: A uniform random bit
          generator, like <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">mt19937_64</span></code>.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">value_to_reach</span></code>: An optional
          value that, if reached, stops the optimization. This is the most robust
          way to terminate the calculation, but in most cases the optimal value of
          the cost function is unknown. If it is, use it! Physical considerations
          can often be used to find optimal values for cost functions.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">cancellation</span></code>: An optional
          atomic boolean to allow the user to stop the computation and gracefully
          return the best result found up to that point. N.B.: Cancellation is not
          immediate; the in-progress generation finishes.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">current_minimum_cost</span></code>: An
          optional atomic variable to store the current minimum cost during optimization.
          This allows developers to (e.g.) plot the progress of the minimization
          over time and in conjunction with the <code class="computeroutput"><span class="identifier">cancellation</span></code>
          argument allow halting the computation when the progress stagnates.
        </li>
<li class="listitem">
          <code class="computeroutput"><span class="identifier">queries</span></code>: An optional vector
          to store intermediate results during optimization. This is useful for debugging
          and perhaps volume rendering of the objective function after the calculation
          is complete.
        </li>
</ul></div>
<p>
      Returns:
    </p>
<p>
      The <code class="computeroutput"><span class="identifier">ArgumentContainer</span></code> corresponding
      to the minimum cost found by the optimization.
    </p>
<h5>
<a name="math_toolkit.random_search.h3"></a>
      <span class="phrase"><a name="math_toolkit.random_search.examples"></a></span><a class="link" href="random_search.html#math_toolkit.random_search.examples">Examples</a>
    </h5>
<p>
      An example exhibiting graceful cancellation and progress observability can
      be studied in <a href="../../../example/random_search_example.cpp" target="_top">random_search_example.cpp</a>.
    </p>
<h5>
<a name="math_toolkit.random_search.h4"></a>
      <span class="phrase"><a name="math_toolkit.random_search.references"></a></span><a class="link" href="random_search.html#math_toolkit.random_search.references">References</a>
    </h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem">
          D. H. Wolpert and W. G. Macready, <span class="emphasis"><em>No free lunch theorems for
          optimization.</em></span> IEEE Transactions on Evolutionary Computation,
          vol. 1, no. 1, pp. 67-82, April 1997, doi: 10.1109/4235.585893.
        </li></ul></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="jso.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../optimization.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="cma_es.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>