File: tr1_ref.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (558 lines) | stat: -rw-r--r-- 68,050 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>TR1 C Functions Quick Reference</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../extern_c.html" title='Chapter 9. TR1 and C99 external "C" Functions'>
<link rel="prev" href="c99.html" title="C99 C Functions">
<link rel="next" href="../root_finding.html" title="Chapter 10. Root Finding &amp; Minimization Algorithms">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="c99.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../extern_c.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../root_finding.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.tr1_ref"></a><a class="link" href="tr1_ref.html" title="TR1 C Functions Quick Reference">TR1 C Functions Quick Reference</a>
</h2></div></div></div>
<h5>
<a name="math_toolkit.tr1_ref.h0"></a>
      <span class="phrase"><a name="math_toolkit.tr1_ref.supported_tr1_functions"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.supported_tr1_functions">Supported
      TR1 Functions</a>
    </h5>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">tr1</span><span class="special">{</span> <span class="keyword">extern</span> <span class="string">"C"</span><span class="special">{</span>

<span class="comment">// [5.2.1.1] associated Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">assoc_laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.2] associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">assoc_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.3] beta function:</span>
<span class="keyword">double</span> <span class="identifier">beta</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">betaf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">betal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>

<span class="comment">// [5.2.1.4] (complete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>

<span class="comment">// [5.2.1.5] (complete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>

<span class="comment">// [5.2.1.6] (complete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>

<span class="comment">// [5.2.1.8] regular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_if</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_il</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.9] cylindrical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_jf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_jl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.10] irregular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_kf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_kl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.11] cylindrical Neumann functions;</span>
<span class="comment">// cylindrical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_neumannf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_neumannl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.12] (incomplete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>

<span class="comment">// [5.2.1.13] (incomplete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>

<span class="comment">// [5.2.1.14] (incomplete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>

<span class="comment">// [5.2.1.15] exponential integral:</span>
<span class="keyword">double</span> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">expintf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">expintl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.16] Hermite polynomials:</span>
<span class="keyword">double</span> <span class="identifier">hermite</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hermitef</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hermitel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.18] Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.19] Legendre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.20] Riemann zeta function:</span>
<span class="keyword">double</span> <span class="identifier">riemann_zeta</span><span class="special">(</span><span class="keyword">double</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">riemann_zetaf</span><span class="special">(</span><span class="keyword">float</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">riemann_zetal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">);</span>

<span class="comment">// [5.2.1.21] spherical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_bessel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_besself</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_bessell</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.22] spherical associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">sph_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>

<span class="comment">// [5.2.1.23] spherical Neumann functions;</span>
<span class="comment">// spherical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_neumann</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_neumannf</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_neumannl</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="special">}}}}</span> <span class="comment">// namespaces</span>
</pre>
<p>
      In addition sufficient additional overloads of the <code class="computeroutput"><span class="keyword">double</span></code>
      versions of the above functions are provided, so that calling the function
      with any mixture of <code class="computeroutput"><span class="keyword">float</span></code>, <code class="computeroutput"><span class="keyword">double</span></code>, <code class="computeroutput"><span class="keyword">long</span>
      <span class="keyword">double</span></code>, or <span class="emphasis"><em>integer</em></span>
      arguments is supported, with the return type determined by the <a class="link" href="result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
      type calculation rules</em></span></a>.
    </p>
<p>
      For example:
    </p>
<pre class="programlisting"><span class="identifier">expintf</span><span class="special">(</span><span class="number">2.0f</span><span class="special">);</span>  <span class="comment">// float version, returns float.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0f</span><span class="special">);</span>   <span class="comment">// also calls the float version and returns float.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0</span><span class="special">);</span>    <span class="comment">// double version, returns double.</span>
<span class="identifier">expintl</span><span class="special">(</span><span class="number">2.0L</span><span class="special">);</span>  <span class="comment">// long double version, returns a long double.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2.0L</span><span class="special">);</span>   <span class="comment">// also calls the long double version.</span>
<span class="identifier">expint</span><span class="special">(</span><span class="number">2</span><span class="special">);</span>      <span class="comment">// integer argument is treated as a double, returns double.</span>
</pre>
<h5>
<a name="math_toolkit.tr1_ref.h1"></a>
      <span class="phrase"><a name="math_toolkit.tr1_ref.quick_reference"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.quick_reference">Quick
      Reference</a>
    </h5>
<pre class="programlisting"><span class="comment">// [5.2.1.1] associated Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">assoc_laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      The assoc_laguerre functions return:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/laguerre_1.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_poly/laguerre.html" title="Laguerre (and Associated) Polynomials">laguerre</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.2] associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">assoc_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">assoc_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">assoc_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      The assoc_legendre functions return:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/legendre_1b.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_poly/legendre.html" title="Legendre (and Associated) Polynomials">legendre_p</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.3] beta function:</span>
<span class="keyword">double</span> <span class="identifier">beta</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">betaf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">y</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">betal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">y</span><span class="special">);</span>
</pre>
<p>
      Returns the beta function of <span class="emphasis"><em>x</em></span> and <span class="emphasis"><em>y</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/beta1.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_beta/beta_function.html" title="Beta">beta</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.4] (complete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
      Returns the complete elliptic integral of the first kind of <span class="emphasis"><em>k</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/ellint6.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="ellint/ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">ellint_1</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.5] (complete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">);</span>
</pre>
<p>
      Returns the complete elliptic integral of the second kind of <span class="emphasis"><em>k</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/ellint7.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="ellint/ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">ellint_2</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.6] (complete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">comp_ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">comp_ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">comp_ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">);</span>
</pre>
<p>
      Returns the complete elliptic integral of the third kind of <span class="emphasis"><em>k</em></span>
      and <span class="emphasis"><em>nu</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/ellint8.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="ellint/ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">ellint_3</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.8] regular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_i</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_if</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_il</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the modified bessel function of the first kind of <span class="emphasis"><em>nu</em></span>
      and <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/mbessel2.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="bessel/mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_i</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.9] cylindrical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_j</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_jf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_jl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the bessel function of the first kind of <span class="emphasis"><em>nu</em></span> and
      <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/bessel2.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="bessel/bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_bessel_j</a>
      for the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.10] irregular modified cylindrical Bessel functions:</span>
<span class="keyword">double</span> <span class="identifier">cyl_bessel_k</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_bessel_kf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_bessel_kl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the modified bessel function of the second kind of <span class="emphasis"><em>nu</em></span>
      and <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/mbessel3.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="bessel/mbessel.html" title="Modified Bessel Functions of the First and Second Kinds">cyl_bessel_k</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.11] cylindrical Neumann functions;</span>
<span class="comment">// cylindrical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">cyl_neumann</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">cyl_neumannf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">cyl_neumannl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the bessel function of the second kind (Neumann function) of <span class="emphasis"><em>nu</em></span>
      and <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/bessel3.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="bessel/bessel_first.html" title="Bessel Functions of the First and Second Kinds">cyl_neumann</a>
      for the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.12] (incomplete) elliptic integral of the first kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_1</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_1f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_1l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
      Returns the incomplete elliptic integral of the first kind of <span class="emphasis"><em>k</em></span>
      and <span class="emphasis"><em>phi</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/ellint2.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="ellint/ellint_1.html" title="Elliptic Integrals of the First Kind - Legendre Form">ellint_1</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.13] (incomplete) elliptic integral of the second kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_2</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_2f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_2l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
      Returns the incomplete elliptic integral of the second kind of <span class="emphasis"><em>k</em></span>
      and <span class="emphasis"><em>phi</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/ellint3.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="ellint/ellint_2.html" title="Elliptic Integrals of the Second Kind - Legendre Form">ellint_2</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.14] (incomplete) elliptic integral of the third kind:</span>
<span class="keyword">double</span> <span class="identifier">ellint_3</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">ellint_3f</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">phi</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">ellint_3l</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">k</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">nu</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">phi</span><span class="special">);</span>
</pre>
<p>
      Returns the incomplete elliptic integral of the third kind of <span class="emphasis"><em>k</em></span>,
      <span class="emphasis"><em>nu</em></span> and <span class="emphasis"><em>phi</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/ellint4.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="ellint/ellint_3.html" title="Elliptic Integrals of the Third Kind - Legendre Form">ellint_3</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.15] exponential integral:</span>
<span class="keyword">double</span> <span class="identifier">expint</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">expintf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">expintl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the exponential integral Ei of <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/expint_i_1.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="expint/expint_i.html" title="Exponential Integral Ei">expint</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.16] Hermite polynomials:</span>
<span class="keyword">double</span> <span class="identifier">hermite</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hermitef</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hermitel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the n'th Hermite polynomial of <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/hermite_0.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_poly/hermite.html" title="Hermite Polynomials">hermite</a> for the
      full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.18] Laguerre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">laguerre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">laguerref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">laguerrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the n'th Laguerre polynomial of <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/laguerre_0.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_poly/laguerre.html" title="Laguerre (and Associated) Polynomials">laguerre</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.19] Legendre polynomials:</span>
<span class="keyword">double</span> <span class="identifier">legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the l'th Legendre polynomial of <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/legendre_0.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_poly/legendre.html" title="Legendre (and Associated) Polynomials">legendre_p</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.20] Riemann zeta function:</span>
<span class="keyword">double</span> <span class="identifier">riemann_zeta</span><span class="special">(</span><span class="keyword">double</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">riemann_zetaf</span><span class="special">(</span><span class="keyword">float</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">riemann_zetal</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span><span class="special">);</span>
</pre>
<p>
      Returns the Riemann Zeta function of <span class="emphasis"><em>x</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/zeta1.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="zetas/zeta.html" title="Riemann Zeta Function">zeta</a> for the full template
      (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.21] spherical Bessel functions (of the first kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_bessel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_besself</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_bessell</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the spherical Bessel function of the first kind of <span class="emphasis"><em>x</em></span>
      j<sub>n</sub>(x):
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/sbessel2.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="bessel/sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">sph_bessel</a> for
      the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.22] spherical associated Legendre functions:</span>
<span class="keyword">double</span> <span class="identifier">sph_legendre</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_legendref</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">theta</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_legendrel</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">l</span><span class="special">,</span> <span class="keyword">unsigned</span> <span class="identifier">m</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">theta</span><span class="special">);</span>
</pre>
<p>
      Returns the spherical associated Legendre function of <span class="emphasis"><em>l</em></span>,
      <span class="emphasis"><em>m</em></span> and <span class="emphasis"><em>theta</em></span>:
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/spherical_3.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="sf_poly/sph_harm.html" title="Spherical Harmonics">spherical_harmonic</a>
      for the full template (header only) version of this function.
    </p>
<pre class="programlisting"><span class="comment">// [5.2.1.23] spherical Neumann functions;</span>
<span class="comment">// spherical Bessel functions (of the second kind):</span>
<span class="keyword">double</span> <span class="identifier">sph_neumann</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">sph_neumannf</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">sph_neumannl</span><span class="special">(</span><span class="keyword">unsigned</span> <span class="identifier">n</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<p>
      Returns the spherical Neumann function of <span class="emphasis"><em>x</em></span> y<sub>n</sub>(x):
    </p>
<div class="blockquote"><blockquote class="blockquote"><p>
        <span class="inlinemediaobject"><img src="../../equations/sbessel2.svg"></span>

      </p></blockquote></div>
<p>
      See also <a class="link" href="bessel/sph_bessel.html" title="Spherical Bessel Functions of the First and Second Kinds">sph_bessel</a> for
      the full template (header only) version of this function.
    </p>
<h5>
<a name="math_toolkit.tr1_ref.h2"></a>
      <span class="phrase"><a name="math_toolkit.tr1_ref.currently_unsupported_tr1_functi"></a></span><a class="link" href="tr1_ref.html#math_toolkit.tr1_ref.currently_unsupported_tr1_functi">Currently
      Unsupported TR1 Functions</a>
    </h5>
<pre class="programlisting"><span class="comment">// [5.2.1.7] confluent hypergeometric functions:</span>
<span class="keyword">double</span> <span class="identifier">conf_hyperg</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">conf_hypergf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">conf_hypergl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>

<span class="comment">// [5.2.1.17] hypergeometric functions:</span>
<span class="keyword">double</span> <span class="identifier">hyperg</span><span class="special">(</span><span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">float</span> <span class="identifier">hypergf</span><span class="special">(</span><span class="keyword">float</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">c</span><span class="special">,</span> <span class="keyword">float</span> <span class="identifier">x</span><span class="special">);</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">hypergl</span><span class="special">(</span><span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">a</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">b</span><span class="special">,</span> <span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">c</span><span class="special">,</span>
<span class="keyword">long</span> <span class="keyword">double</span> <span class="identifier">x</span><span class="special">);</span>
</pre>
<div class="note"><table border="0" summary="Note">
<tr>
<td rowspan="2" align="center" valign="top" width="25"><img alt="[Note]" src="../../../../../doc/src/images/note.png"></td>
<th align="left">Note</th>
</tr>
<tr><td align="left" valign="top"><p>
        These two functions are not implemented as they are not believed to be numerically
        stable.
      </p></td></tr>
</table></div>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="c99.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../extern_c.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../root_finding.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>