File: trans.html

package info (click to toggle)
scipy 1.16.0-1exp7
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 234,820 kB
  • sloc: cpp: 503,145; python: 344,611; ansic: 195,638; javascript: 89,566; fortran: 56,210; cs: 3,081; f90: 1,150; sh: 848; makefile: 785; pascal: 284; csh: 135; lisp: 134; xml: 56; perl: 51
file content (143 lines) | stat: -rw-r--r-- 13,200 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Quaternion Transcendentals</title>
<link rel="stylesheet" href="../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../index.html" title="Math Toolkit 4.2.1">
<link rel="up" href="../quaternions.html" title="Chapter 17. Quaternions">
<link rel="prev" href="create.html" title="Quaternion Creation Functions">
<link rel="next" href="quat_tests.html" title="Test Program">
<meta name="viewport" content="width=device-width, initial-scale=1">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
<td align="center"><a href="../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="create.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_tests.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h2 class="title" style="clear: both">
<a name="math_toolkit.trans"></a><a class="link" href="trans.html" title="Quaternion Transcendentals">Quaternion Transcendentals</a>
</h2></div></div></div>
<p>
      There is no <code class="computeroutput"><span class="identifier">log</span></code> or <code class="computeroutput"><span class="identifier">sqrt</span></code> provided for quaternions in this implementation,
      and <code class="computeroutput"><span class="identifier">pow</span></code> is likewise restricted
      to integral powers of the exponent. There are several reasons to this: on the
      one hand, the equivalent of analytic continuation for quaternions ("branch
      cuts") remains to be investigated thoroughly (by me, at any rate...),
      and we wish to avoid the nonsense introduced in the standard by exponentiations
      of complexes by complexes (which is well defined, but not in the standard...).
      Talking of nonsense, saying that <code class="computeroutput"><span class="identifier">pow</span><span class="special">(</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">)</span></code> is "implementation
      defined" is just plain brain-dead...
    </p>
<p>
      We do, however provide several transcendentals, chief among which is the exponential.
      This author claims the complete proof of the "closed formula" as
      his own, as well as its independent invention (there are claims to prior invention
      of the formula, such as one by Professor Shoemake, and it is possible that
      the formula had been known a couple of centuries back, but in absence of bibliographical
      reference, the matter is pending, awaiting further investigation; on the other
      hand, the definition and existence of the exponential on the quaternions, is
      of course a fact known for a very long time). Basically, any converging power
      series with real coefficients which allows for a closed formula in <span class="emphasis"><em><span class="bold"><strong>C</strong></span></em></span> can be transposed to <span class="emphasis"><em><span class="bold"><strong>H</strong></span></em></span>. More transcendentals of this type could
      be added in a further revision upon request. It should be noted that it is
      these functions which force the dependency upon the <a href="../../../../../boost/math/special_functions/sinc.hpp" target="_top">boost/math/special_functions/sinc.hpp</a>
      and the <a href="../../../../../boost/math/special_functions/sinhc.hpp" target="_top">boost/math/special_functions/sinhc.hpp</a>
      headers.
    </p>
<h5>
<a name="math_toolkit.trans.h0"></a>
      <span class="phrase"><a name="math_toolkit.trans.exp"></a></span><a class="link" href="trans.html#math_toolkit.trans.exp">exp</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">exp</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the exponential of the quaternion.
    </p>
<h5>
<a name="math_toolkit.trans.h1"></a>
      <span class="phrase"><a name="math_toolkit.trans.cos"></a></span><a class="link" href="trans.html#math_toolkit.trans.cos">cos</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">cos</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the cosine of the quaternion
    </p>
<h5>
<a name="math_toolkit.trans.h2"></a>
      <span class="phrase"><a name="math_toolkit.trans.sin"></a></span><a class="link" href="trans.html#math_toolkit.trans.sin">sin</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">sin</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the sine of the quaternion.
    </p>
<h5>
<a name="math_toolkit.trans.h3"></a>
      <span class="phrase"><a name="math_toolkit.trans.tan"></a></span><a class="link" href="trans.html#math_toolkit.trans.tan">tan</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">tan</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the tangent of the quaternion.
    </p>
<h5>
<a name="math_toolkit.trans.h4"></a>
      <span class="phrase"><a name="math_toolkit.trans.cosh"></a></span><a class="link" href="trans.html#math_toolkit.trans.cosh">cosh</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">cosh</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the hyperbolic cosine of the quaternion.
    </p>
<h5>
<a name="math_toolkit.trans.h5"></a>
      <span class="phrase"><a name="math_toolkit.trans.sinh"></a></span><a class="link" href="trans.html#math_toolkit.trans.sinh">sinh</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">sinh</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the hyperbolic sine of the quaternion.
    </p>
<h5>
<a name="math_toolkit.trans.h6"></a>
      <span class="phrase"><a name="math_toolkit.trans.tanh"></a></span><a class="link" href="trans.html#math_toolkit.trans.tanh">tanh</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">tanh</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">);</span>
</pre>
<p>
      Computes the hyperbolic tangent of the quaternion.
    </p>
<h5>
<a name="math_toolkit.trans.h7"></a>
      <span class="phrase"><a name="math_toolkit.trans.pow"></a></span><a class="link" href="trans.html#math_toolkit.trans.pow">pow</a>
    </h5>
<pre class="programlisting"><span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">typename</span> <span class="identifier">T</span><span class="special">&gt;</span> <span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span>  <span class="identifier">pow</span><span class="special">(</span><span class="identifier">quaternion</span><span class="special">&lt;</span><span class="identifier">T</span><span class="special">&gt;</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">q</span><span class="special">,</span> <span class="keyword">int</span> <span class="identifier">n</span><span class="special">);</span>
</pre>
<p>
      Computes the n-th power of the quaternion q.
    </p>
</div>
<div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="create.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../quaternions.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="quat_tests.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>